Tag Archives: high torque gearbox

China Good quality CZPT Arrow Znfpy-52 High Torque Gearbox for Twin Screw Extruder Manufacturer wholesaler

Product Description

Overview

Product Description 

Wide Selection of Gearbox Products
The gearbox usually adopts a general design scheme, but in special cases, the design scheme of the gearbox can be changed according to the demands of the user, and it can be modified into an industry-specific gearbox. In the design scheme of the gearbox, the parallel shaft, vertical shaft, general box, and various parts can be changed

Advantages

  • Absorption of very high torques and axial forces
  • No need for separate thrust housing & bearing.
  • Easy alignment (screw directly fits into the vore of gear box)
  • Easy to assemble & dismantle.
  • Very heavy duty spherical roller thrust bearing is provided.
  • Power saving. (you may save up to 20 % power.)
  • Less requirement of space.
  • For bigger sizes water cooling is provided 
  • No maintenance required except periodic oil level checking.
  • Higher productivity 

Features

 

  • Twin Screw Extruder Gearboxes offer the dual shaft counter rotating. The range is available for various center distances
  • The gearboxes are available with co-rotating and counter rotating variants
  • To work under heavy loading force, the high level dissipation and oil lubrication system are provided. The axial roller type swivel thrust with the thrust bearing coupled in tandem way support the axial thrust
  • High torque and high speed output rate

 

Processing Characteristics of Screw Shaft:

1.Suitable suggestion on material to ensure components performance and extend lifetime of products.
2.Professional technical team can provide surveying and mapping support.
3.All components are finished by CNC machine.
4.Sophisticated quality management system ensure superior quality.
 

Basic Info.
 

Warranty: 1 year Weight (KG):
500 KG
Place of Origin:
HangZhou, China
Gearing Arrangement:
helical
ratio:
8-20
Output Torque:
2*176
 
standard:
JB/T8853-2001
Certificate:
CE
Heat treatment:
High-frequency Hardening
Efficiency:
94%~98%(depends on the transmission stage)
Customized support:OEM ODM Input/output shaft material
40Cr
Package:
Wooden case
 
Mount position:
Flange, hollow shaft, CZPT shaft
After-sale:Online 24/7 Installation Xihu (West Lake) Dis. advantage:
excellent quality
Reduction radio:
3:1
 
Mount Position:
Horizontal Foot Mounted Vertical
 
Input Speed:
1500
 
Output Speed:
500
 

Packaging & delivery

Packing: wooden case packing

 
Port: HangZhou Port  

Applications
X helical gear units for double-screw extruders with parallel drive shafts and the same direction of screw rotation are used mainly in the manufacture of granulates and the refining of raw plastics. Other areas of application include:

  • Paint and lacquer industry
  • Washing agent industry
  • Foodstuff industry (e.g. bread, pasta)
  • Animal-feed industry (dog, cat other animal food 

Maintenance of the gearbox of the dual-screw extruder
1. The gear box of the dual-screw extruder should be well-ventilated, and the working environment temperature should be within the range of 5-35 °C.
2. Always check the oil quantity of the gear lubricating oil in the box to ensure that the transmission parts in the box are well lubricated.
3. Pay attention to check the bearing parts of the box frequently. The oil temperature of the oil tank of the transmission box should not exceed 70 ºC during operation.
4. The newly put into use gearbox needs to replace the lubricating oil after 250 hours of operation. The oil change time depends on the state of the oil. It is recommended to replace it after 4000-8000 hours of operation or once a year.
5. The gearbox of the dual-screw extruder needs to be regularly maintained and inspected once a year 

Operating Process
1. The gear on the input shaft is driven by the motor and starts to rotate.
2. The rotating input gear meshes with other gears inside the gearbox, transmitting power.
3. Different-sized gears within the gearbox are combined to form a gear train. Through continuous meshing and rotation, the high-speed, low-torque power from the input shaft gradually converts into low-speed, high-torque output.
4. The output shaft is connected to the last gear and transfers the output torque to the load.
5. Gear reduction gearboxes typically include lubrication and cooling systems to ensure smooth operation and prevent overheating and damage.
6. Our extruder gearbox converts high-speed, low-torque power into low-speed, high-torque output by changing the size ratios and meshing arrangements of different gears, achieving the function of speed reduction.

Types of Gearboxes:
Based on customer requirements, gear reduction gearboxes can be classified according to the size of the output shaft, center distance of the output shaft, output speed, and torque. Alternatively, we can provide several commonly used types of gearboxes for customers to choose from.

Product Service

24-hour Hotline

 

No matter when and where

to call we can find our service to you.

 

 

Pre-sales Consultation

 

We have 5 sales people online,

and whether you have any question

can be solved through online

communication.

After-sales Services

 

Receive products have any

questions about the product,

can look for us,we will help

you deal with the the first time,to your satisfaction.

Exhibition

Certificate

Company profile
ZheJiang Arrow Machinery Co., Ltd.is a company specializing in R&D, production, sales, application promotion of food engineering projects. As 1 of the largest scaled food processing equipment &whole plant engineering problem solvers in China, machines served for more than 970 companies, export to 116 countries, area, more than 20 years engineering team, we recognize that quality equals value, aims to create a great future together with global customers.

FAQ

 

1.  Q: How about Arrow Machinery?

     R: ZheJiang Arrow Machinery Co., Ltd. is a High-Tech company. Our firm is composed of a strong  

        team which has substantial experience in R&D, manufacture, technique and sales service and has

        specialized in extruder industry for 10 years,leading screw barrel manufacturer in China.
2. Q:What’s Arrow machinery’s capacity? 
    R:Company is in strict accordance with CE and ISO9001 quality certification system.There are over 200

       models of extruders and spare parts. 

3. Q:What’s the delivery time? 

    R:For regular size, we have finished stock and semi-finished stock, 2 weeks max enough

        for customized, normally within 20days .

4. Q:How about the gearbox quality and price? 
    R: top quality in China with competitive price and globle after-sale service
5. Q:what’s the life time and guarantee buy from Arrow machinery ?
    R: 3~5years life time for nitriding ones and bimtallic ones will be longer 
        One year min. Guarantee.
6.Q:Where is Arrow Machinery factory and how to reach there? 
   R:NO.47 Chengbohu Road, Xihu (West Lake) Dis. District,HangZhou City, China. You can take the train or plane to HangZhou and we can pick        you up.
7.Q:How to contact with you? 
   R:just reply to me if have any question. 

Application: Motor, Machinery
Function: Distribution Power, Change Drive Torque, Change Drive Direction, Speed Changing, Speed Reduction, Speed Increase
Layout: Cycloidal
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

helical gearbox

Cyclone Gearbox Vs Involute Gearbox

Whether you’re using a cycloidal gearbox or an involute gearbox for your application, there are a few things you should know. This article will highlight some of those things, including: cycloidal gearbox vs involute gearbox, weight, compressive force, precision, and torque density.

Compressive force

Several studies have been carried out to analyze the static characteristics of gears. In this article, the authors investigate the structural and kinematic principles of a cycloidal gearbox. The cycloidal gearbox is a gearbox that uses an eccentric bearing inside a rotating frame. It has no common pinion-gear pair, and is therefore ideal for a high reduction ratio.
The purpose of this paper is to investigate the stress distribution on a cycloidal disc. Various gear profiles are investigated in order to study the load distribution and dynamic effects.
Cycloidal gearboxes are subject to compression and backlash, which require the use of proper ratios for the bearing rate and the TSA. The paper also focuses on the kinematic principles of the reducer. In addition, the authors use standard analysis techniques for the shaft/gear and the cycloidal disc.
The authors previously worked on a rigid body dynamic simulation of a cycloidal reducer. The analysis used a trochoidal profile on the cycloidal disc periphery. The trochoidal profile is obtained from a manufacturing drawing and takes into account the tolerances.
The mesh density in the cycloidal disc captures the exact geometry of the parts. It provides accurate contact stresses.
The cycloidal disc consists of nine lobes, which move by one lobe per rotation of the drive shaft. However, when the disc is rotated around the pins, the cycloidal disc does not move around the center of gravity. Therefore, the cycloidal disc shares torque load with five outer rollers.
A low reduction ratio in a cycloidal gearbox results in a higher induced stress in the cycloidal disc. This is due to the bigger hole designed to reduce the material inside the disc.

Torque density

Several types of magnetic gearboxes have been studied. Some magnetic gearboxes have a higher torque density than others, but they are still not able to compete with the mechanical gearboxes.
A new high torque density cycloidal magnetic gearbox using Halbach rotors has been developed and is being tested. The design was validated by building a CPCyMG prototype. The results showed that the simulated slip torque was comparable to the experimental slip torque. The peak torque measured was a p3 = 14 spatial harmonic, and it corresponds to the active region torque density of 261.4 N*m/L.
This cycloidal gearbox also has a high gear ratio. It has been tested to achieve a peak torque of 147.8 Nm, which is more than double the torque density of the traditional cycloidal gearbox. The design incorporates a ferromagnetic back-support that provides mechanical fabrication support.
This cycloidal gearbox also shows how a small diameter can achieve a high torque density. It is designed with an axial length of 50mm. The radial deflection forces are not serious at this length. The design uses a small air gap to reduce the radial deflection forces, but it is not the only design option.
The trade-off design also has a high volumetric torque density. It has a smaller air gap and a higher mass torque density. It is feasible to make and mechanically strong. The design is also one of the most efficient in its class.
The helical gearing design is a newer technology that brings a higher level of precision to a cycloidal gearbox. It allows a servomotor to handle a heavy load at high cycle rates. It is also useful in applications that require smaller design envelopes.helical gearbox

Weight

Compared to planetary gearboxes, the weight of cycloidal gearboxes is not as significant. However, they do provide some advantages. One of the most significant features is their backlash-free operation, which helps them deliver smooth and precise movement.
In addition, they provide high efficiency, which means that servo motors can run at higher speeds. The best part is that they do not need to be stacked up in order to achieve a high ratio.
Another advantage of cycloidal gearboxes is that they are usually less expensive than planetary gearboxes. This means that they are suitable for the manufacturing industry and robotics. They are also suited for heavy-duty robots that require a robust gearbox.
They also provide a better reduction ratio. Cycloidal gears can achieve reduction ratios from 30:1 to 300:1, which is a huge improvement over planetary gears. However, there are few models available that provide a ratio below 30:1.
Cycloidal gears also offer more resistance to wear, which means that they can last longer than planetary gears. They are also more compact, which helps them achieve high ratios in a smaller space. The design of cycloidal gears also makes them less prone to backlash, which is one of the major shortcomings of planetary gearboxes.
In addition, cycloidal gears can also provide better positioning accuracy. In fact, this is one of the primary reasons for choosing cycloidal gears over planetary gears. This is because the cycloid disc rotates around a bearing independently of the input shaft.
Compared to planetary gearboxes, cycloidal gears are also much shorter. This means that they provide the best positioning accuracy. They are also 50% lighter, meaning that they have a smaller diameter.

Precision

Several experts have studied the cycloidal gearbox in precision reducers. Their research mainly focuses on the mathematical model and the method for precision evaluation of cycloidal gears.
The traditional modification design of cycloidal gears is mainly realized by setting various machining parameters and center position of the grinding wheel. But it has some disadvantages because of unstable meshing accuracy and uncontrollable tooth profile curve shape.
In this study, a new method of modification design of cycloidal gears is proposed. This method is based on the calculation of meshing backlash and pressure angle distribution. It can effectively pre-control the transmission accuracy of cycloid-pin gear. It can also ensure good meshing characteristics.
The proposed method can be applied in the manufacture of rotary vector reducers. It is also applicable in the precision reducer for robots.
The mathematical model for cycloidal gears can be established with the pressure angle a as a dependent variable. It is possible to calculate the pressure angle distribution and the profile pressure angle. It can also be expressed as DL=f(a). It can be applied in the design of precision reducers.
The study also considers the root clearance, the backlash of gear teeth and the profile angle. These factors have a direct effect on the transmission performance of cycloidal gear. It also indicates the higher motion accuracy and the smaller backlash. The modified profile can also reflect the smaller transmission error.
In addition, the proposed method is also based on the calculation of lost motion. It determines the angle of first tooth contacts. This angle is an important factor affecting the modification quality. The transmission error after the second cycloid method is the least.
Finally, a case study on the CZPT RV-35N gear pair is shown to prove the proposed method.helical gearbox

Involute gears vs cycloidal gears

Compared to involute gears, cycloidal gears have a lower noise, less friction, and last longer. However, they are more expensive. Cycloidal gears can be more difficult to manufacture. They may be less suitable for certain applications, including space manipulators and robotic joints.
The most common gear profile is the involute curve of a circle. This curve is formed by the endpoint of an imaginary taut string unwinding from the circle.
Another curve is the epicycloid curve. This curve is formed by the point rigidly attached to the circle rolling over another circle. This curve is difficult to produce and is much more expensive to produce than the involute curve.
The cycloid curve of a circle is also an example of the multi-cursor. This curve is generated by the locus of the point on the circle’s circumference.
The cycloid curve has the same diameter as the involute curve, but is tangentially curving along the circle’s diameter. This curve is also classified as ordinary. It has several other functions. The FE method was used to analyze the strain state of cycloidal speed reducers.
There are many other curves, but the involute curve is the most widely used gear profile. The involute curve of a circle is a spiraling curve traced by the endpoint of an imaginary tautstring.
Involute gears are a lot like a set of Lego blocks. They are a lot of fun to play with. They also have a lot of advantages. For example, they can handle center sifts better than cycloidal gears. They are also much easier to manufacture, so the cost of involute teeth is lower. However, they are obsolete.
Cycloidal gears are also more difficult to manufacture than involute gears. They have a convex surface, which leads to more wear. They also have a simpler shape than involute gears. They also have less teeth. They are used in rotary motions, such as in the rotors of screw compressors.
China Good quality CZPT Arrow Znfpy-52 High Torque Gearbox for Twin Screw Extruder Manufacturer   wholesaler China Good quality CZPT Arrow Znfpy-52 High Torque Gearbox for Twin Screw Extruder Manufacturer   wholesaler
editor by CX 2023-10-22

China Good quality Cycloidal Gearbox Speed Reducer Cyclo Drive Gear Motor Small Planetary Gearbox Gear Speed Planetary Reduction Stainless Steel CZPT Epicyclic High Torque cycloidal drive gear ratio

Product Description

       Cycloidal gearbox speed reducer cyclo drive gear motor small planetary gearbox            gear speed planetary reduction stainless steel CZPT epicyclic high torque

Application of Cycloidal gearbox

Cycloidal gearboxes are a type of gear reducer that uses cycloidal gears to transmit power. Cycloidal gears are characterized by their smooth, quiet operation and their ability to handle high torque loads. This makes them ideal for a variety of applications, including:

  • Robotics: Cycloidal gearboxes are often used in robots because they can provide the high torque and low backlash that is required for precise motion control.
  • Machine tools: Cycloidal gearboxes are used in machine tools to provide smooth, quiet operation and to help to extend the life of the machine tools.
  • Aerospace: Cycloidal gearboxes are used in aerospace applications because they are lightweight, durable, and can withstand high temperatures.
  • Wind turbines: Cycloidal gearboxes are used in wind turbines to convert the high-speed rotation of the turbine blades into a lower-speed rotation that can be used to drive a generator.
  • Other applications: Cycloidal gearboxes are also used in a variety of other applications, including food processing, medical equipment, and automotive applications.

Here are some of the advantages of using cycloidal gearboxes:

  • High efficiency: Cycloidal gearboxes are very efficient, typically achieving efficiencies of 95% or more.
  • Low noise: Cycloidal gearboxes operate very quietly, making them ideal for use in applications where noise is a concern.
  • Long life: Cycloidal gears are very durable and can last for many years under normal operating conditions.
  • Compact design: Cycloidal gearboxes are typically smaller and lighter than other types of gear reducers, making them ideal for use in applications where space is limited.

Cycloidal gearboxes are a versatile type of gear reducer that can be used in a variety of applications. They offer a number of advantages over other types of gear reducers, including high efficiency, low noise, long life, and compact design.

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car
Function: Distribution Power, Clutch, Change Drive Torque, Change Drive Direction, Speed Changing, Speed Reduction, Speed Increase
Layout: Three-Ring
Hardness: Hardened Tooth Surface
Installation: Torque Arm Type
Step: Stepless
Samples:
US$ 9999/Piece
1 Piece(Min.Order)

|
Request Sample

helical gearbox

Cyclone Gearbox Vs Involute Gearbox

Whether you’re using a cycloidal gearbox or an involute gearbox for your application, there are a few things you should know. This article will highlight some of those things, including: cycloidal gearbox vs involute gearbox, weight, compressive force, precision, and torque density.

Compressive force

Several studies have been carried out to analyze the static characteristics of gears. In this article, the authors investigate the structural and kinematic principles of a cycloidal gearbox. The cycloidal gearbox is a gearbox that uses an eccentric bearing inside a rotating frame. It has no common pinion-gear pair, and is therefore ideal for a high reduction ratio.
The purpose of this paper is to investigate the stress distribution on a cycloidal disc. Various gear profiles are investigated in order to study the load distribution and dynamic effects.
Cycloidal gearboxes are subject to compression and backlash, which require the use of proper ratios for the bearing rate and the TSA. The paper also focuses on the kinematic principles of the reducer. In addition, the authors use standard analysis techniques for the shaft/gear and the cycloidal disc.
The authors previously worked on a rigid body dynamic simulation of a cycloidal reducer. The analysis used a trochoidal profile on the cycloidal disc periphery. The trochoidal profile is obtained from a manufacturing drawing and takes into account the tolerances.
The mesh density in the cycloidal disc captures the exact geometry of the parts. It provides accurate contact stresses.
The cycloidal disc consists of nine lobes, which move by one lobe per rotation of the drive shaft. However, when the disc is rotated around the pins, the cycloidal disc does not move around the center of gravity. Therefore, the cycloidal disc shares torque load with five outer rollers.
A low reduction ratio in a cycloidal gearbox results in a higher induced stress in the cycloidal disc. This is due to the bigger hole designed to reduce the material inside the disc.

Torque density

Several types of magnetic gearboxes have been studied. Some magnetic gearboxes have a higher torque density than others, but they are still not able to compete with the mechanical gearboxes.
A new high torque density cycloidal magnetic gearbox using Halbach rotors has been developed and is being tested. The design was validated by building a CPCyMG prototype. The results showed that the simulated slip torque was comparable to the experimental slip torque. The peak torque measured was a p3 = 14 spatial harmonic, and it corresponds to the active region torque density of 261.4 N*m/L.
This cycloidal gearbox also has a high gear ratio. It has been tested to achieve a peak torque of 147.8 Nm, which is more than double the torque density of the traditional cycloidal gearbox. The design incorporates a ferromagnetic back-support that provides mechanical fabrication support.
This cycloidal gearbox also shows how a small diameter can achieve a high torque density. It is designed with an axial length of 50mm. The radial deflection forces are not serious at this length. The design uses a small air gap to reduce the radial deflection forces, but it is not the only design option.
The trade-off design also has a high volumetric torque density. It has a smaller air gap and a higher mass torque density. It is feasible to make and mechanically strong. The design is also one of the most efficient in its class.
The helical gearing design is a newer technology that brings a higher level of precision to a cycloidal gearbox. It allows a servomotor to handle a heavy load at high cycle rates. It is also useful in applications that require smaller design envelopes.helical gearbox

Weight

Compared to planetary gearboxes, the weight of cycloidal gearboxes is not as significant. However, they do provide some advantages. One of the most significant features is their backlash-free operation, which helps them deliver smooth and precise movement.
In addition, they provide high efficiency, which means that servo motors can run at higher speeds. The best part is that they do not need to be stacked up in order to achieve a high ratio.
Another advantage of cycloidal gearboxes is that they are usually less expensive than planetary gearboxes. This means that they are suitable for the manufacturing industry and robotics. They are also suited for heavy-duty robots that require a robust gearbox.
They also provide a better reduction ratio. Cycloidal gears can achieve reduction ratios from 30:1 to 300:1, which is a huge improvement over planetary gears. However, there are few models available that provide a ratio below 30:1.
Cycloidal gears also offer more resistance to wear, which means that they can last longer than planetary gears. They are also more compact, which helps them achieve high ratios in a smaller space. The design of cycloidal gears also makes them less prone to backlash, which is one of the major shortcomings of planetary gearboxes.
In addition, cycloidal gears can also provide better positioning accuracy. In fact, this is one of the primary reasons for choosing cycloidal gears over planetary gears. This is because the cycloid disc rotates around a bearing independently of the input shaft.
Compared to planetary gearboxes, cycloidal gears are also much shorter. This means that they provide the best positioning accuracy. They are also 50% lighter, meaning that they have a smaller diameter.

Precision

Several experts have studied the cycloidal gearbox in precision reducers. Their research mainly focuses on the mathematical model and the method for precision evaluation of cycloidal gears.
The traditional modification design of cycloidal gears is mainly realized by setting various machining parameters and center position of the grinding wheel. But it has some disadvantages because of unstable meshing accuracy and uncontrollable tooth profile curve shape.
In this study, a new method of modification design of cycloidal gears is proposed. This method is based on the calculation of meshing backlash and pressure angle distribution. It can effectively pre-control the transmission accuracy of cycloid-pin gear. It can also ensure good meshing characteristics.
The proposed method can be applied in the manufacture of rotary vector reducers. It is also applicable in the precision reducer for robots.
The mathematical model for cycloidal gears can be established with the pressure angle a as a dependent variable. It is possible to calculate the pressure angle distribution and the profile pressure angle. It can also be expressed as DL=f(a). It can be applied in the design of precision reducers.
The study also considers the root clearance, the backlash of gear teeth and the profile angle. These factors have a direct effect on the transmission performance of cycloidal gear. It also indicates the higher motion accuracy and the smaller backlash. The modified profile can also reflect the smaller transmission error.
In addition, the proposed method is also based on the calculation of lost motion. It determines the angle of first tooth contacts. This angle is an important factor affecting the modification quality. The transmission error after the second cycloid method is the least.
Finally, a case study on the CZPT RV-35N gear pair is shown to prove the proposed method.helical gearbox

Involute gears vs cycloidal gears

Compared to involute gears, cycloidal gears have a lower noise, less friction, and last longer. However, they are more expensive. Cycloidal gears can be more difficult to manufacture. They may be less suitable for certain applications, including space manipulators and robotic joints.
The most common gear profile is the involute curve of a circle. This curve is formed by the endpoint of an imaginary taut string unwinding from the circle.
Another curve is the epicycloid curve. This curve is formed by the point rigidly attached to the circle rolling over another circle. This curve is difficult to produce and is much more expensive to produce than the involute curve.
The cycloid curve of a circle is also an example of the multi-cursor. This curve is generated by the locus of the point on the circle’s circumference.
The cycloid curve has the same diameter as the involute curve, but is tangentially curving along the circle’s diameter. This curve is also classified as ordinary. It has several other functions. The FE method was used to analyze the strain state of cycloidal speed reducers.
There are many other curves, but the involute curve is the most widely used gear profile. The involute curve of a circle is a spiraling curve traced by the endpoint of an imaginary tautstring.
Involute gears are a lot like a set of Lego blocks. They are a lot of fun to play with. They also have a lot of advantages. For example, they can handle center sifts better than cycloidal gears. They are also much easier to manufacture, so the cost of involute teeth is lower. However, they are obsolete.
Cycloidal gears are also more difficult to manufacture than involute gears. They have a convex surface, which leads to more wear. They also have a simpler shape than involute gears. They also have less teeth. They are used in rotary motions, such as in the rotors of screw compressors.
China Good quality Cycloidal Gearbox Speed Reducer Cyclo Drive Gear Motor Small Planetary Gearbox Gear Speed Planetary Reduction Stainless Steel CZPT Epicyclic High Torque   cycloidal drive gear ratioChina Good quality Cycloidal Gearbox Speed Reducer Cyclo Drive Gear Motor Small Planetary Gearbox Gear Speed Planetary Reduction Stainless Steel CZPT Epicyclic High Torque   cycloidal drive gear ratio
editor by CX 2023-05-11

China best 70mm 7: 1 High Output Torque Density 1kw Servo Gearbox for CNC Milling Machine cycloidal gearbox backlash

Product Description

Product Description

70mm 7:1 High output torque density 1kw servo gearbox for CNC milling machine
DM series precision square flange high precision reducer. Reducer bearings are CZPT brand, gear after carbonization treatment, so the accuracy and rigidity are superior! Reducer output shaft is customized size and length according to customer requirements.

Fubao planetary gear box manufacturer, the supply of high-precision planetary reducer has the following advantages:
 

1, compact structure: the characteristics of large torque planetary reducer is to make full use of space, limited space design bearing and gear ratio, so that the product is smaller than the traditional reducer volume can save space.
 

2, high efficiency: the planetary gear group will be in a completely tight meshing state when running, reducing gear collision or local meshing resulting in gear damage. The completely tight meshing characteristic makes the efficiency loss of each gear transmission only 3%. This type of transmission mode can ensure that the kinetic energy input reducer to the mechanical end of the process, still can maintain high transmission efficiency, avoid the internal gear friction, sliding, mechanical loss.
 

3, high axial and radial load capacity: the output shaft of Fubao technology’s high-torque planetary reducer adopts a large-span style, so that the bearing is configured at both ends of the output shaft. The design can effectively disperse the force acting on the output shaft and reduce the load of the bearing. In other words, the product strengthens the bearing and radial load capacity under the same size.
 

4, high strength: large torque planetary reducer gear group is very strong and stable, the thickness of the gear dispersed the load on the gear. The large span bearing group provides a stable structure, and the precision gear group allows the load to be distributed to each planetary gear under tight meshing to withstand the torque load.
 

5, high stability: precision processing to ensure that the product coaxial and concentric, coupled with bearing large span design, so that large torque planetary reducer with excellent stability.

 

Detailed Photos

Other products

Company Profile

Factory Display

Q: Speed reducer grease replacement time 
A: When sealing appropriate amount of grease and running reducer, the standard replacement time is 20000 hours according to the aging condition of the grease. In addition, when the grease is stained or used in the surrounding temperature condition (above 40ºC), please check the aging and fouling of the grease, and specify the replacement time.

Q: Delivery time 
A: Fubao has 2000+ production base, daily output of 1000+ units, standard models within 7 days of delivery.

Q: Reducer selection 
A: Fubao provides professional product selection guidance, with higher product matching degree, higher cost performance and higher utilization rate.

Q: Application range of reducer 
A: Fubao has a professional research and development team, complete category design, can match any stepping motor, servo motor, more accurate matching.

Shipping Cost:

Estimated freight per unit.



To be negotiated
Application: Motor, Machinery, Agricultural Machinery, Mechanical Equipment
Function: Distribution Power, Change Drive Torque, Speed Changing, Speed Reduction, Reduce Motor Speed
Layout: Cycloidal
Customization:
Available

|

Customized Request

helical gearbox

Cyclone Gearbox Vs Involute Gearbox

Whether you’re using a cycloidal gearbox or an involute gearbox for your application, there are a few things you should know. This article will highlight some of those things, including: cycloidal gearbox vs involute gearbox, weight, compressive force, precision, and torque density.

Compressive force

Several studies have been carried out to analyze the static characteristics of gears. In this article, the authors investigate the structural and kinematic principles of a cycloidal gearbox. The cycloidal gearbox is a gearbox that uses an eccentric bearing inside a rotating frame. It has no common pinion-gear pair, and is therefore ideal for a high reduction ratio.
The purpose of this paper is to investigate the stress distribution on a cycloidal disc. Various gear profiles are investigated in order to study the load distribution and dynamic effects.
Cycloidal gearboxes are subject to compression and backlash, which require the use of proper ratios for the bearing rate and the TSA. The paper also focuses on the kinematic principles of the reducer. In addition, the authors use standard analysis techniques for the shaft/gear and the cycloidal disc.
The authors previously worked on a rigid body dynamic simulation of a cycloidal reducer. The analysis used a trochoidal profile on the cycloidal disc periphery. The trochoidal profile is obtained from a manufacturing drawing and takes into account the tolerances.
The mesh density in the cycloidal disc captures the exact geometry of the parts. It provides accurate contact stresses.
The cycloidal disc consists of nine lobes, which move by one lobe per rotation of the drive shaft. However, when the disc is rotated around the pins, the cycloidal disc does not move around the center of gravity. Therefore, the cycloidal disc shares torque load with five outer rollers.
A low reduction ratio in a cycloidal gearbox results in a higher induced stress in the cycloidal disc. This is due to the bigger hole designed to reduce the material inside the disc.

Torque density

Several types of magnetic gearboxes have been studied. Some magnetic gearboxes have a higher torque density than others, but they are still not able to compete with the mechanical gearboxes.
A new high torque density cycloidal magnetic gearbox using Halbach rotors has been developed and is being tested. The design was validated by building a CPCyMG prototype. The results showed that the simulated slip torque was comparable to the experimental slip torque. The peak torque measured was a p3 = 14 spatial harmonic, and it corresponds to the active region torque density of 261.4 N*m/L.
This cycloidal gearbox also has a high gear ratio. It has been tested to achieve a peak torque of 147.8 Nm, which is more than double the torque density of the traditional cycloidal gearbox. The design incorporates a ferromagnetic back-support that provides mechanical fabrication support.
This cycloidal gearbox also shows how a small diameter can achieve a high torque density. It is designed with an axial length of 50mm. The radial deflection forces are not serious at this length. The design uses a small air gap to reduce the radial deflection forces, but it is not the only design option.
The trade-off design also has a high volumetric torque density. It has a smaller air gap and a higher mass torque density. It is feasible to make and mechanically strong. The design is also one of the most efficient in its class.
The helical gearing design is a newer technology that brings a higher level of precision to a cycloidal gearbox. It allows a servomotor to handle a heavy load at high cycle rates. It is also useful in applications that require smaller design envelopes.helical gearbox

Weight

Compared to planetary gearboxes, the weight of cycloidal gearboxes is not as significant. However, they do provide some advantages. One of the most significant features is their backlash-free operation, which helps them deliver smooth and precise movement.
In addition, they provide high efficiency, which means that servo motors can run at higher speeds. The best part is that they do not need to be stacked up in order to achieve a high ratio.
Another advantage of cycloidal gearboxes is that they are usually less expensive than planetary gearboxes. This means that they are suitable for the manufacturing industry and robotics. They are also suited for heavy-duty robots that require a robust gearbox.
They also provide a better reduction ratio. Cycloidal gears can achieve reduction ratios from 30:1 to 300:1, which is a huge improvement over planetary gears. However, there are few models available that provide a ratio below 30:1.
Cycloidal gears also offer more resistance to wear, which means that they can last longer than planetary gears. They are also more compact, which helps them achieve high ratios in a smaller space. The design of cycloidal gears also makes them less prone to backlash, which is one of the major shortcomings of planetary gearboxes.
In addition, cycloidal gears can also provide better positioning accuracy. In fact, this is one of the primary reasons for choosing cycloidal gears over planetary gears. This is because the cycloid disc rotates around a bearing independently of the input shaft.
Compared to planetary gearboxes, cycloidal gears are also much shorter. This means that they provide the best positioning accuracy. They are also 50% lighter, meaning that they have a smaller diameter.

Precision

Several experts have studied the cycloidal gearbox in precision reducers. Their research mainly focuses on the mathematical model and the method for precision evaluation of cycloidal gears.
The traditional modification design of cycloidal gears is mainly realized by setting various machining parameters and center position of the grinding wheel. But it has some disadvantages because of unstable meshing accuracy and uncontrollable tooth profile curve shape.
In this study, a new method of modification design of cycloidal gears is proposed. This method is based on the calculation of meshing backlash and pressure angle distribution. It can effectively pre-control the transmission accuracy of cycloid-pin gear. It can also ensure good meshing characteristics.
The proposed method can be applied in the manufacture of rotary vector reducers. It is also applicable in the precision reducer for robots.
The mathematical model for cycloidal gears can be established with the pressure angle a as a dependent variable. It is possible to calculate the pressure angle distribution and the profile pressure angle. It can also be expressed as DL=f(a). It can be applied in the design of precision reducers.
The study also considers the root clearance, the backlash of gear teeth and the profile angle. These factors have a direct effect on the transmission performance of cycloidal gear. It also indicates the higher motion accuracy and the smaller backlash. The modified profile can also reflect the smaller transmission error.
In addition, the proposed method is also based on the calculation of lost motion. It determines the angle of first tooth contacts. This angle is an important factor affecting the modification quality. The transmission error after the second cycloid method is the least.
Finally, a case study on the CZPT RV-35N gear pair is shown to prove the proposed method.helical gearbox

Involute gears vs cycloidal gears

Compared to involute gears, cycloidal gears have a lower noise, less friction, and last longer. However, they are more expensive. Cycloidal gears can be more difficult to manufacture. They may be less suitable for certain applications, including space manipulators and robotic joints.
The most common gear profile is the involute curve of a circle. This curve is formed by the endpoint of an imaginary taut string unwinding from the circle.
Another curve is the epicycloid curve. This curve is formed by the point rigidly attached to the circle rolling over another circle. This curve is difficult to produce and is much more expensive to produce than the involute curve.
The cycloid curve of a circle is also an example of the multi-cursor. This curve is generated by the locus of the point on the circle’s circumference.
The cycloid curve has the same diameter as the involute curve, but is tangentially curving along the circle’s diameter. This curve is also classified as ordinary. It has several other functions. The FE method was used to analyze the strain state of cycloidal speed reducers.
There are many other curves, but the involute curve is the most widely used gear profile. The involute curve of a circle is a spiraling curve traced by the endpoint of an imaginary tautstring.
Involute gears are a lot like a set of Lego blocks. They are a lot of fun to play with. They also have a lot of advantages. For example, they can handle center sifts better than cycloidal gears. They are also much easier to manufacture, so the cost of involute teeth is lower. However, they are obsolete.
Cycloidal gears are also more difficult to manufacture than involute gears. They have a convex surface, which leads to more wear. They also have a simpler shape than involute gears. They also have less teeth. They are used in rotary motions, such as in the rotors of screw compressors.
China best 70mm 7: 1 High Output Torque Density 1kw Servo Gearbox for CNC Milling Machine   cycloidal gearbox backlashChina best 70mm 7: 1 High Output Torque Density 1kw Servo Gearbox for CNC Milling Machine   cycloidal gearbox backlash
editor by CX 2023-04-26

China RV-6EM High precision big torque low backlash RV cycloid pin wheel gearbox with compact structure for robot joint with rigidity gearbox assembly

Warranty: 12 months
Relevant Industries: Foodstuff Shop, Printing Shops, Power & Mining, Other, Robot, CNC device, rotary table
Excess weight (KG): 2.5 KG
Personalized help: OEM
Gearing Arrangement: Cycloidal
Output Torque: forty seven-6135Nm
Enter Pace: primarily based on motor
Output Speed: dependent on ratio
Coloration: silver or silver with black
Ratio: 31: 1-192.4:1
Backlash: <=1 arcmin
fat: 2.5kg-66.4kg
Buildings: compact
Lead time: ten-15 days
Software: robot or equipment instrument
Matching motor: servo motor or stepper motor BLDC motor
Packing: carton or wood box
Keyword: RV gearbox
Packaging Details: Carton or wooden box
Port: ZheJiang

Merchandise Overview Description: RV-EM is a direct input cycloidal pinwheel reducer. It is broadly used in transmission industries this sort of as robots, machine tools and positioners. Its core is the same as the RV-E reducer. At the same time, it has been enhanced and upgraded on the basis of the RV-E construction style. It saves users a good deal of difficulties and tremendously increases the comfort of use. It is a high-performance RV reducer that makes it less difficult for customers to use.The enter finish of the RV-EM cycloidal pinwheel reducer is equipped with an enter flange, and it is connected with the set up connector corresponding to the servo motor of every business. It can be right set up with the motor, BEARING Manufacturing facility gearbox parts deep groove ball bearings rodamiento ROLAMENTO 6212 6212ZN 6212 NR 6011571MM machinery bearings which efficiently improves the comfort of the item. The enter flange dimensions of RV-EM reducer can be custom-made and can be simply related to different manufacturers of motors, which greatly improves the independence of customers’ layout and use of RV reducers.In addition, the RV-EM cycloidal reducer has been greased and sealed prior to leaving the manufacturing facility. Consumers can put in and use it immediately, which simplifies the operation actions and saves customers a great deal of difficulties. Attributes AT A Glance *Small vibration*Outstanding beginning effectiveness*Misplaced motion much less than 1 arc. min. *Backlash is much less than 1 arc-min *Robust torsional rigidity, compact measurement*Coaxial parts for a lot more style overall flexibility*Built-in angular bearing for higher thrust and cantilever momentum*High reduction ratio (up to 250:1) with no growing the measurement of the reducer*Huge torque to 5X rated torque (emergency stop

ModelRV-6EM, RV-20EM, RV-40EM, RV-80EM, RV-110EM RV-160EM, 81152 M Bearing 260x320x45 mm Cylindrical roller thrust bearings K 81152 M 81152M RV-320EM, RV-450EM
Ratio31:1, 41:1, fifty three.5:1, 57:1, fifty nine:1, seventy nine:1, eighty one:1, 101:1, 103:1, Totally free Samples 6200-2RS 10309mm Deep Groove Ball Bearing For Bike 105:1, 111:1, 118.5:1, 121:1, 129:1, 141:1, one hundred forty five:1, 153:1, 154.8:1 161:1, 171:1, Efant YRT150 YRT100 YRT180 YRT200 Customized P2 P4 Substantial Precision Axial Radial Cam Indexer Rotary Table Bearing 185:1, 192.4:1
Backlash<=arcmin
Torque47-6135Nm
Weight2.5-66.4kg
PackageCarton or wooden gearbox
True Figures Model Variety Solution Requirements Dimensions Comparable Items EXHIBITION

Choosing a Gearbox For Your Application

The gearbox is an essential part of bicycles. It is used for several purposes, including speed and force. A gearbox is used to achieve one or both of these goals, but there is always a trade-off. Increasing speed increases wheel speed and forces on the wheels. Similarly, increasing pedal force increases the force on the wheels. This makes it easier for cyclists to accelerate their bicycles. However, this compromise makes the gearbox less efficient than an ideal one.
gearbox

Dimensions

Gearboxes come in different sizes, so the size of your unit depends on the number of stages. Using a chart to determine how many stages are required will help you determine the dimensions of your unit. The ratios of individual stages are normally greater at the top and get smaller as you get closer to the last reduction. This information is important when choosing the right gearbox for your application. However, the dimensions of your gearbox do not have to be exact. Some manufacturers have guides that outline the required dimensions.
The service factor of a gearbox is a combination of the required reliability, the actual service condition, and the load that the gearbox will endure. It can range from 1.0 to 1.4. If the service factor of a gearbox is 1.0, it means that the unit has just enough capacity to meet your needs, but any extra requirements could cause the unit to fail or overheat. However, service factors of 1.4 are generally sufficient for most industrial applications, since they indicate that a gearbox can withstand 1.4 times its application requirement.
Different sizes also have different shapes. Some types are concentric, while others are parallel or at a right angle. The fourth type of gearbox is called shaft mount and is used when mounting the gearbox by foot is impossible. We will discuss the different mounting positions later. In the meantime, keep these dimensions in mind when choosing a gearbox for your application. If you have space constraints, a concentric gearbox is usually your best option.

Construction

The design and construction of a gearbox entails the integration of various components into a single structure. The components of a gearbox must have sufficient rigidity and adequate vibration damping properties. The design guidelines note the approximate values for the components and recommend the production method. Empirical formulas were used to determine the dimensions of the various components. It was found that these methods can simplify the design process. These methods are also used to calculate the angular and axial displacements of the components of the gearbox.
In this project, we used a 3D modeling software called SOLIDWORKS to create a 3-D model of a gear reducer. We used this software to simulate the structure of the gearbox, and it has powerful design automation tools. Although the gear reducer and housing are separate parts, we model them as a single body. To save time, we also removed the auxiliary elements, such as oil inlets and oil level indicators, from the 3D model.
Our method is based on parameter-optimized deep neural networks (DBNs). This model has both supervised and unsupervised learning capabilities, allowing it to be self-adaptive. This method is superior to traditional methods, which have poor self-adaptive feature extraction and shallow network generalization. Our algorithm is able to recognize faults in different states of the gearbox using its vibration signal. We have tested our model on two gearboxes.
With the help of advanced material science technologies, we can now manufacture the housing for the gearbox using high-quality steel and aluminium alloys. In addition, advanced telematics systems have increased the response time of manufacturers. These technologies are expected to create tremendous opportunities in the coming years and fuel the growth of the gearbox housing market. There are many different ways to construct a gearbox, and these techniques are highly customizable. In this study, we will consider the design and construction of various gearbox types, as well as their components.
gearbox

Working

A gearbox is a mechanical device that transmits power from one gear to another. The different types of gears are called planetary gears and are used in a variety of applications. Depending on the type of gearbox, it may be concentric, parallel, or at a right angle. The fourth type of gearbox is a shaft mount. The shaft mount type is used in applications that cannot be mounted by foot. The various mounting positions will be discussed later.
Many design guidelines recommend a service factor of 1.0, which needs to be adjusted based on actual service conditions. This factor is the combined measure of external load, required reliability, and overall gearbox life. In general, published service factors are the minimum requirements for a particular application, but a higher value is necessary for severe loading. This calculation is also recommended for high-speed gearboxes. However, the service factor should not be a sole determining factor in the selection process.
The second gear of a pair of gears has more teeth than the first gear. It also turns slower, but with greater torque. The second gear always turns in the opposite direction. The animation demonstrates this change in direction. A gearbox can also have more than one pair of gears, and a first gear may be used for the reverse. When a gear is shifted from one position to another, the second gear is engaged and the first gear is engaged again.
Another term used to describe a gearbox is “gear box.” This term is an interchangeable term for different mechanical units containing gears. Gearboxes are commonly used to alter speed and torque in various applications. Hence, understanding the gearbox and its parts is essential to maintaining your car’s performance. If you want to extend the life of your vehicle, be sure to check the gearbox’s efficiency. The better its functioning, the less likely it is to fail.

Advantages

Automatic transmission boxes are almost identical to mechanical transmission boxes, but they also have an electronic component that determines the comfort of the driver. Automatic transmission boxes use special blocks to manage shifts effectively and take into account information from other systems, as well as the driver’s input. This ensures accuracy and positioning. The following are a few gearbox advantages:
A gearbox creates a small amount of drag when pedaling, but this drag is offset by the increased effort to climb. The external derailleur system is more efficient when adjusted for friction, but it does not create as little drag in dry conditions. The internal gearbox allows engineers to tune the shifting system to minimize braking issues, pedal kickback, and chain growth. As a result, an internal gearbox is a great choice for bikes with high-performance components.
Helical gearboxes offer some advantages, including a low noise level and lower vibration. They are also highly durable and reliable. They can be extended in modular fashion, which makes them more expensive. Gearboxes are best for applications involving heavy loads. Alternatively, you can opt for a gearbox with multiple teeth. A helical gearbox is more durable and robust, but it is also more expensive. However, the benefits far outweigh the disadvantages.
A gearbox with a manual transmission is often more energy-efficient than one with an automatic transmission. Moreover, these cars typically have lower fuel consumption and higher emissions than their automatic counterparts. In addition, the driver does not have to worry about the brakes wearing out quickly. Another advantage of a manual transmission is its affordability. A manual transmission is often available at a lower cost than its automatic counterpart, and repairs and interventions are easier and less costly. And if you have a mechanical problem with the gearbox, you can control the fuel consumption of your vehicle with appropriate driving habits.
gearbox

Application

While choosing a gearbox for a specific application, the customer should consider the load on the output shaft. High impact loads will wear out gear teeth and shaft bearings, requiring higher service factors. Other factors to consider are the size and style of the output shaft and the environment. Detailed information on these factors will help the customer choose the best gearbox. Several sizing programs are available to determine the most appropriate gearbox for a specific application.
The sizing of a gearbox depends on its input speed, torque, and the motor shaft diameter. The input speed must not exceed the required gearbox’s rating, as high speeds can cause premature seal wear. A low-backlash gearbox may be sufficient for a particular application. Using an output mechanism of the correct size may help increase the input speed. However, this is not recommended for all applications. To choose the right gearbox, check the manufacturer’s warranty and contact customer service representatives.
Different gearboxes have different strengths and weaknesses. A standard gearbox should be durable and flexible, but it must also be able to transfer torque efficiently. There are various types of gears, including open gearing, helical gears, and spur gears. Some of the types of gears can be used to power large industrial machines. For example, the most popular type of gearbox is the planetary drive gearbox. These are used in material handling equipment, conveyor systems, power plants, plastics, and mining. Gearboxes can be used for high-speed applications, such as conveyors, crushers, and moving monorail systems.
Service factors determine the life of a gearbox. Often, manufacturers recommend a service factor of 1.0. However, the actual value may be higher or lower than that. It is often useful to consider the service factor when choosing a gearbox for a particular application. A service factor of 1.4 means that the gearbox can handle 1.4 times the load required. For example, a 1,000-inch-pound gearbox would need a 1,400-inch-pound gearbox. Service factors can be adjusted to suit different applications and conditions.

China RV-6EM High precision big torque low backlash RV cycloid pin wheel gearbox with compact structure for robot joint with rigidity     gearbox assembly	China RV-6EM High precision big torque low backlash RV cycloid pin wheel gearbox with compact structure for robot joint with rigidity     gearbox assembly
editor by czh 2023-02-17

China High Torque Precision Robot Arm Joint Rv Gearbox Reducer Cycloidal pin wheel harmonic Reduction Gear gearbox design

Warranty: 1 yr
Applicable Industries: Other
Excess weight (KG): 35
Tailored help: OEM, ODM, OBM
Gearing Arrangement: Worm
Output Torque: 10 N.M–55mm and gradually understand the smart products generation line .Our goods are widely used in textile machine、printing machine、food machine、medical machine、convey machine、packaging machinery、work grasp machine、vending machine、 cement machine、computer flat knitting machine、automatic table、office equipment and solar photovoltaic equipment and so on .Our goods are popularly marketed in domestic marketplaces and foreign markets this kind of as Southeast Asia、 India、Europe、America、Middle East and Australia and so forth. The sales quantity carries on to increase at a charge of far more than forty% for each yearWe passed ISO9001、CE 、UL、CCC and ROHS certification and many others..We can fulfill you with the industry’s initial technology ,top quality and fast services help .Honest cooperation with you to construct lovely Backyard .Welcome to go to our factoryHangZhou HENGTUO MOTOR CO.,LTDADD: N0.108,SHANGYEJIA Highway NORTH,HUSHAN Avenue, HangZhou,HangZhou Town,ZHangZhouG PROVINCE,CHINA. Certifications FAQ Q: Are you gear motors company ?A: Of course we are factory.Q: Where are your manufacturing unit ?A: HangZhou, HangZhou, Near ZheJiang cityQ: How several employee in your manufacturing unit ?A: 158 staff.Q: How to buy?A: Send us inquiry → Receive our quotation → Negotiate particulars → Validate the sample → Indicator contract/deposit → Mass production→Cargo all set → Equilibrium/shipping and delivery → Additional cooperationQ: How about Sample buy?A: Sample is offered for you. you should speak to us for details. As soon as we charge you sample fee, please feel straightforward, it would be refundwhen you spot formal get.Q: Which ship way is accessible?A: DHL, UPS, FedEx, TNT, EMS, China Submit,Sea are available.The other shipping and delivery ways are also offered, make sure you contact us if youneed ship by the other shipping way. Q: How long is lead time ?A: Deliver time depends on the quantity you get. usually lead time will take 3-5 doing work times.

Types of Gearboxes

There are several types of gearboxes. Some are known as helical gear reducers, while others are called planetary gearboxes. The article also discusses Continuously Variable Transmission (CVT) and helical gear reducer. If you are interested in purchasing a new gearbox, make sure to read our articles on these different types. If you are confused, consider reading our articles on planetary gearboxes and helical gear reducers.
gearbox

planetary gearbox

The planetary gearbox has several advantages. Its compact design and light weight allows it to transmit high torques while remaining quiet. The gears are connected to one another through a carrier, which is typically fixed and helps transmit torques to the output shaft. Its planetary structure arrangement also reduces backlash and provides high rigidity, which is important for quick start and stop cycles and rotational direction change. Depending on the design and performance desired, planetary gearboxes are categorized into three main types:
The type of planetary gears used in a given application determines the overall cost of the unit. Manufacturers offer a range of prices, and they can help you determine which gearbox is right for your needs. You should also ask a manufacturer for the cost of a planetary gearbox. By asking about price and specs, you can avoid wasting money and time on a planetary gearbox that does not perform up to its potential.
A planetary gearbox is probably installed in your new car’s automatic transmission. For more information, consult your owner’s manual or call the dealer’s service department. This type of gearbox is more complex than other types of gearboxes, so if you don’t know much about them, do an internet search for “planetary gearbox.”
The teeth of a planetary gearbox are formed by the stepping motion of two gears: the sun gear and the inner ring. The sun gear is the input, while the planetary gears rotate around the sun gear. Their ratio depends on the number of teeth and the space between the planets. If you have a 24 tooth sun gear, the planetary gears’ ratio will be -3/2. The sun gear is also attached to the axle.
Another advantage of a planetary gear system is that it can generate high torques. The load is shared among multiple planet gears. This makes the gears more resilient to damage. A planetary gearbox can be as high as 332,000 Nm, and can be used in vehicles and industrial applications requiring medium to high torque. A planetary gear system is a great alternative to a traditional transmission. So, how does it work?

helical gearbox

The main difference between the helical gearbox and the spur gear is the center distance between the teeth. The helical gearbox has a larger pitch circle than the spur gear and thus requires a radial module. In addition, the two types of gears can only be made with the same tooth-cutting tool as the spur gear. However, the helical gearbox is more efficient in terms of production costs.
The helical gearbox is a low-power consumption, compact type of gearbox that is used for a wide range of industrial applications. They are highly durable and withstand high loads with utmost efficiency. The helical gearbox can be manufactured in cast steel and iron for small and medium units. This type of gearbox is also commonly used for crushers, conveyors, coolers, and other applications that need low power.
The helical gear has many advantages over the spur gear. It produces less noise. It has less friction and is less likely to wear out. It is also quieter than spur gears. This is because multiple teeth are in mesh. Because the teeth are in mesh, the load is distributed over a larger area, resulting in a smoother transition between gears. The reduction in noise and vibration reduces the risk of damaging the gear.
The helical gear’s axial excitation force is obtained using a linearized equation of motion in the rotational direction. The damping coefficient of the equation is 0.07. The helical gear is made up of a steel shaft with a diameter of 20 mm and a 5 mm thick aluminum plate. The stiffness of the bearing is 6.84 x 107 N/m. The damping force of the plate is 2,040 kg/m2/s.
The worm gearbox has a better efficiency ratio than the helical one, but it is less efficient in low-ratio applications. In general, worm gearboxes are more efficient than helical gearboxes, although there are some exceptions to this rule. A helical gearbox is better for applications that require high torque. It may also be more economical in the long run. If you are considering a helical gearbox, consider the advantages it has over worm gearboxes.
gearbox

helical gear reducer

A helical gear reducer for a machine’s gearbox is an integral component of the drive system. This unit amplifies torque and controls speed and, therefore, compliments the engine by rotating slower than the engine’s input shaft. A helical gear reducer is a compact gearbox component that is used in industrial applications. A variety of sizes is available to suit various machine configurations. The following sections will discuss some of the different types available.
Designed by experts and engineers, a helical gear reducer is a surprisingly small and light gear that satisfies the needs of many machine applications. It features a large transmission torque, a low starting and running speed, and a fine classification of transmission ratios. A helical gear reducer is lightweight and easily connected to other gears, and it features a high technical content.
In order to avoid errors and poor performance, regular maintenance is a must. The proper lubrication of the gear reducer can minimize failures, errors, and poor performance. Every gear reducer manufacturer sells a suitable lubricant, which must match the properties of the machine’s drive mechanism. It is also advisable to check the lubrication regularly to avoid any deterioration of the unit’s performance.
While the worm gearbox may be better for applications where torque is high, the helical gear reducer offers greater efficiency at lower cost. Although worm gearboxes may be cheaper initially, they are less effective at higher ratios. Even if the worm gear is more expensive to buy, it still offers 94% efficiency, which makes it more cost-effective. There are some significant advantages to both types of gearboxes.
The main advantage of a helical gear reducer over a spur gear is its smoother operation. Unlike spur gears, which have teeth that are straight, helical gears have angled teeth that gradually engage with each other. This helps ensure that the gear does not grind or make excessive noise when it turns. Additionally, they are less commonly used in automation and precision machinery. They are often used in industrial applications.
gearbox

Continuously variable transmission

A Continuously Variable Transmission (CVT) is an automatic transmission that can run through a vast number of gears. Unlike a standard automatic transmission, it can run at any speed, even at a low rev. The CVT is also capable of running at infinitely low gears. Its basic function is to provide different torque ratios to the engine. In addition to delivering power, CVTs have other benefits.
One of the major advantages of a CVT is its simplicity. Its simplicity translates into fewer moving parts, which means less maintenance. The CVT’s simplicity also means that it can handle a wide variety of different types of road conditions and driving styles. In addition to being a great alternative to a traditional automatic transmission, CVTs can be used on many other types of vehicles, including tractors, snowmobiles, motor scooters, and power tools.
A CVT is much smoother than a conventional automatic transmission. It never has to hunt for a gear. It also responds well to throttle inputs and speed changes. Both of these technologies are available on many modern vehicles, including the Nissan Rogue and Mazda CX-5. It’s important to note that each of these transmissions has its pros and cons. So, if you’re looking for a car with a CVT, make sure to read the reviews. They’ll help you decide which transmission is right for you.
Another advantage of a CVT is its fuel efficiency. Many cars now feature CVTs, and they’re becoming increasingly popular with automakers. In addition to fuel efficiency, most cars with CVTs also have a smoother ride. There’s no more sudden downshifts or gear hunting. This makes driving a lot easier. And, the added benefits of smoother driving make CVTs the ideal choice for many drivers.
Although a CVT is more common among Japanese car manufacturers, you’ll find CVTs on European car models as well. The Mercedes-Benz A-Class, B-Class, and Megane are some examples of vehicles that use this technology. Before making a decision, consider the reliability of the model in question. Consumer Reports is a good resource for this. It also offers a history of use and reliability for every type of car, including the Honda Accord.

China High Torque Precision Robot Arm Joint Rv Gearbox Reducer Cycloidal pin wheel harmonic Reduction Gear     gearbox design		China High Torque Precision Robot Arm Joint Rv Gearbox Reducer Cycloidal pin wheel harmonic Reduction Gear     gearbox design
editor by czh 2023-02-17

China High Torque Helical Gearbox Reduction Worm Gear Left Hand Harmonic Drive with high quality

Warranty: 1 12 months, 1 Yr
Relevant Industries: Production Plant, Equipment Fix Stores, Retail
Customized assistance: OEM, ODM
Gearing Arrangement: Cycloidal
Output Torque: 6.2-280N.m
Enter Speed: 2000-8000r/min
Output Velocity: fifty-160rpm
Merchandise identify: Harmonic travel
Application: transmission
Shade: silver grey
Ratio: fifty-a hundred and sixty
Variety: Harmonic Generate Robotic
Key phrase: Harmonic reducer
Material: Forged Iron
Mounting Situation: Horizontal (foot Mounted)
Constructions: Bearing CZPT bearing price tag listing catalogue large precision and minimal sounds, our goods can greater serve the intelligent marketplace the company constantly optimizes items and integrates higher-quality assets to achieve product diversification and enhance competitiveness to meet up with the demands of customers.The company’s goods are broadly employed in the electronics sector (this kind of as Foxcorrn, Asus, Huawei, and so on.), automotive business(Japan Toyota, BYD, etc.), logistics warehousing (such as SF, Xihu (West Lake) Dis., Tmall, VIPshop, and many others.), property appliance sector (this kind of as Hisense, Gree, BOE, and many others.), Substantial pace fingerboard bearing manufacturers 1x3x1mm 681 mini ball bearings as properly as stereo parking garages, tobacco, printing, textile, agricultural equipment, packaging, medical, processing and high-speed railindustriesAt current, our mainland’s company internet sites are located in ZheJiang , ZheJiang , ZheJiang , HangZhou, ZheJiang , HangZhou, HangZhou,HangZhou, HangZhou, Drawn Cup Needle Roller Bearing Open up Finish HK2816 HK2820 HK3012 HK3016 HK3571 HK3571 HK3026 HK3220 HK3224 HK3512 HK3516 HK3520 HangZhou, HangZhou, HangZhou, HangZhou, HangZhou, HangZhou, HangZhou, HangZhou, HangZhou, HangZhou and other locations. At the exact same time, the firm actively recognized overseas firms to create intercontinental markets such as India, Vietnam, Central and South The us, Europe and Japan. The business in scribes and adheres to the fundamentals of high quality, develops with credit history, an dconti nuously in troduces excellent skills and advaneed equipment and technology. Why Decide on Us 1.20 years of marketing and advertising experience2. 10-person R & D group to give you with technological support3. It is offered at property and abroad and exported to India, Vietnam, Central and South The usa, Shaft Collar Axle Flange Mounting shaft collar for sale Europe and Japan4. The product good quality is assured with a a single-yr warranty5. Products can be tailored Merchandise packaging Revenue AND Provider Network FAQ Q: What must I offer when I decide on gearbox/velocity reducer?A: The greatest way is to offer the motor drawing with parameter. Our engineer will examine and recommend the most appropriate gearboxmodel for your refer. Or you can also give underneath specification as properly:1) Type, design and torque.2) Ratio or output speed3) Operating issue and connection method4) High quality and put in device name5) Enter mode and input speed6) Motor brand name model or flange and motor shaft size

The Different Types of Gearboxes

There are many different types of gearboxes. Some brands have more than one type. In this article, we’ll discuss the planetary gearbox, the worm reduction gearbox, the shaft mounted gearbox, and the one speed gearbox. This article will also help you determine which type of gearbox is best for your vehicle. And don’t worry if you don’t know the terminology yet. We’ll explain each type in detail so that you know what you’re getting yourself into.
gearbox

Planetary gearbox

Planetary gears have many advantages. The multiple gears in a planetary gearbox mesh simultaneously during operation. As such, they provide high efficiency and transmit high transmittable torque. These gears are widely used in various industries and are resistant to high shock loads and demanding conditions. CZPT is one of the companies that offer planetary gearboxes. Its products do not require special tools for assembly, and its scalable design minimizes safety stock.
Among the numerous benefits of planetary gearing is its compactness and lightweight. As such, it is suitable for wide applications with space and weight constraints. However, to truly appreciate its benefits, it is necessary to understand its mechanisms. Here are some of the most common details about planetary gearing:
The planetary gearbox has two mounted gears: an input shaft and an output shaft. Each gear has multiple teeth that are attached to a carrier and rotate with the input shaft. The carrier is connected to the output shaft. A planetary gear is mounted on both gears via a carrier. The carrier rotates in order to drive the planetary gear. The sun gear is often the input gear. The other gear is called the outer gear.
Planetary gearboxes are highly customizable. The size, mounting, and housing options vary, as do the reduction ratios and input speeds. Different types can be manufactured for different applications and include options such as electrical or mechanical preload. The final design of a planetary gearbox can be highly customized, based on the specifications of the application. By combining engineering excellence and ongoing innovation, planetary gearboxes provide years of trouble-free operation.
A planetary gearbox can be either an electric motor or a manual one. The latter has more features than the former, and can be used in applications where space is an issue. The primary features of a planetary gearbox include its backlash, torque, and ratio. Secondary features include noise, corrosion resistance, and construction. A planetary gearbox is a highly versatile gearbox that can drive anything from simple machinery to advanced electrical systems.
gearbox

Worm reduction gearbox

The global worm reduction gearbox market report compiles key insights from the industry to help you improve your business strategy. This report will help you create a comprehensive business document that will enhance your company’s competitive edge. To obtain this report, visit our website now! Read our latest report to find out what you can expect from the global worm reduction gearbox market. Alternatively, request a sample copy for more details. Here is a sneak peek of the report:
Worm gears are made with different thread counts and are usually not matched with the CZPT standard. In general, a single thread worm should be used with a single thread worm. Worm gears have either right or left threads, and their thread count will be different as well. This type of gear is used to reduce the speed of a rotating shaft. The speed reduction ratio will be about 50 percent if the worms have the same thread count as the CZPT gears.
The standard gear set transfers power at the peak load point of a tooth, called the pitchline. The worm gear moves slowly against the wheel’s metal surface. The worm gear is also more complex than the standard gear because the worm is sliding rather than rolling. Worm gears are hard to lubricate. Moreover, the sliding contact between the gear and worm increases the complexity of the gear set. They can be a great solution for applications where noise is a significant factor.
The axial pitch and circular pitch of the worm are equal. The ratio of these two indices determines the speed of transmission. For a worm reduction gearbox to work, the axial pitch and the circular pitch must match. The pitch angle of a worm can either be left-handed or right-handed. The lead of a worm is the distance one thread travels in one revolution. The lead angle is the angle tangent to the thread helix of the cylinder’s pitch. When a worm mesh is reversed, the majority of the mesh will be on the receding arc.
Worm gears generate more heat than their counterparts, so it is important to choose a worm reduction gearbox carefully. You will want to choose the material and amount of lubricating oil carefully. Worm gears are generally made of tin bronze. The paired worms are hardened to HRC45-55. In general, they are durable, lasting up to ten years. But they will wear out – and they wear out – so you may want to consider some other factors.

Shaft-mounted gearbox

Shaft-mounted gearboxes are designed for a variety of mining and quarry applications. Their high reliability and low maintenance make them an excellent choice in these types of applications. Shaft-mounted gearboxes also feature an optional backstop device that prevents the unit from rotating in one direction. This makes them an excellent choice for applications where alignment accuracy is an issue. Here are some of the benefits of using a shaft-mounted gearbox:
Shaft-mounted gearboxes are typically constructed of aluminium, and come in sizes ranging from 050 to 125. They feature a variety of reduction ratios and ensure optimum efficiency in all operating conditions. New S series sizes, 140 and 150, extend the application range of shaft-mounted gearmotors. They are both backed by a two-year warranty. For even greater peace of mind, Shaft-mounted gearboxes are available with a range of warranty options.
The most common applications for a Shaft-mounted gearbox include traction-driven applications where a low-speed shaft is required for operation. They also are suitable for applications without a foundation, where the motor is mounted next to the reducer. To prevent the gear drive from rotating, a torque arm is attached between the motor and the shaft. Small-sized shaft-mounted gear drives are usually made without motor mount kits, which can make them an excellent choice for conveying light loads.
Another important feature of a Shaft-mounted gearbox is its mounting position. The reduced motion through the drive is redirected through the shaft, creating additional forces. These additional forces can affect the performance of the gearbox, causing vibrations and noise. Consequently, it is important to replace worn or damaged belts on a regular basis. Further, shaft-mounted gearboxes can be affected by problems with other components and amplify vibrations.
gearbox

1 speed gearbox

CZPT Group Components produces one speed gearboxes. These transmissions are produced in the CZPT Group’s Kassel plant. They are compact and robust, and are designed for easy integration. The Bosch Rexroth GD1 one-speed gearbox is easy to install horizontally or vertically. The Plug and Drive system integrates the gearbox with the existing cooling system. There are many other benefits to this gearbox.
With an ID.3 electric drive motor, the maximum torque is delivered at 16,000 rpm. This single-speed transmission offers high power density and excellent noise-reduction, making it ideal for electric vehicles. The e-drive motor is extremely quiet and requires precision manufacturing. The e-drive motor also enables a wide range of driving conditions. It can reverse when needed, and reaches its maximum speed at 16,000.
The single-speed gearbox is a standard feature on most electric vehicles. Some electric vehicles, such as the Porsche Taycan, will be equipped with a two-speed gearbox. This gearbox offers more top speed and range, but it is more complex than a standard single-speed gearbox. CZPT doesn’t need to add complexity to its electric vehicles. After all, a 355 horsepower family wagon is not likely to need a dual-speed gearbox.
In addition to simplifying the transmission, the patent claims also address improvements in structural design. Fig. 5 shows a schematic representation of a transmission 50′, wherein gear sets Z1 and Z4 are exchanged between partial transmissions. This switch matrix also reflects the synchronized gears and lastshelf gears. Hydraulically betatigte Lamellenkupplungen (HBA) also form a last-shelf gear.
Another advantage of the patent claim is that it offers numerous functional freedoms, which is especially valuable in the design of an automobile. One of the patent claims identifies a tosatzlicher middle gear that allows a driver to switch between second and third gears, with a single gearbox. In a conventional one-speed transmission, the tosatzlicher middle gear is attached to the second and first part gearbox. The latter has a second and third gear.

China High Torque Helical Gearbox Reduction Worm Gear Left Hand Harmonic Drive     with high quality China High Torque Helical Gearbox Reduction Worm Gear Left Hand Harmonic Drive     with high quality
editor by czh 2023-02-16

China China Gpg Gpb Low Backlash High Torque Servo Motor Stepping Motor Gearhead Transmission High Precision Planetary Gearbox cycloidal drive gear ratio

Product Description

TaiBang Motor Market Group Co., Ltd.

The major items is induction motor, reversible motor, DC brush gear motor, DC brushless equipment motor, CH/CV huge gear motors, Planetary equipment motor ,Worm gear motor etc, which used widely in numerous fields of producing pipelining, transportation, food, drugs, printing, cloth, packing, business office, apparatus, enjoyment and so on, and is the chosen and matched solution for automated machine. 

Design Instruction

GB090-10-P2

GB 090 571 P2
Reducer Series Code External Diameter Reduction Ratio Reducer Backlash
GB:Substantial Precision Square Flange Output

GBR:Large Precision Right Angle Square Flange Output

GE:Higher Precision Round Flange Output

GER:Substantial Precision Proper Spherical Flange Output

050:ø50mm
070:ø70mm
090:ø90mm
one hundred twenty:ø120mm
one hundred fifty five:ø155mm
205:ø205mm
235:ø235mm
042:42x42mm
060:60x60mm
090:90x90mm
one hundred fifteen:115x115mm
142:142x142mm
180:180x180mm
220:220x220mm
571 indicates 1:ten P0:Higher Precision Backlash

P1:Precision Backlash

P2:Common Backlash

Principal Technological Performance
 

Merchandise Amount of phase Reduction Ratio GB042 GB060 GB060A GB090 GB090A GB115 GB142 GB180 GB220
Rotary Inertia 1 three .03 .sixteen   .61   3.25 9.21 28.98 sixty nine.sixty one
4 .03 .fourteen   .forty eight   2.74 seven.fifty four 23.67 fifty four.37
five .03 .13   .47   two.seventy one seven.42 23.29 fifty three.27
6 .03 .13   .forty five   two.sixty five 7.twenty five 22.seventy five 51.72
7 .03 .thirteen   .45   two.sixty two 7.fourteen 22.forty eight fifty.97
8 .03 .thirteen   .44   two.58 7.07 22.fifty nine fifty.84
nine .03 .13   .44   2.fifty seven 7.04 22.53 50.sixty three
10 .03 .13   .forty four   2.57 seven.03 22.51 50.fifty six
2 15 .03 .03 .thirteen .13 .forty seven .47 2.71 seven.forty two 23.29
twenty .03 .03 .13 .thirteen .47 .47 2.71 7.forty two 23.29
25 .03 .03 .thirteen .13 .47 .47 2.seventy one 7.42 23.29
thirty .03 .03 .13 .thirteen .47 .47 2.seventy one seven.42 23.29
35 .03 .03 .13 .thirteen .forty seven .47 two.seventy one 7.42 23.29
forty .03 .03 .thirteen .13 .forty seven .forty seven 2.71 seven.forty two 23.29
45 .03 .03 .thirteen .13 .forty seven .forty seven 2.71 7.forty two 23.29
fifty .03 .03 .thirteen .thirteen .forty four .forty four two.57 7.03 22.51
sixty .03 .03 .thirteen .thirteen .44 .forty four 2.fifty seven seven.03 22.fifty one
70 .03 .03 .thirteen .thirteen .44 .forty four 2.57 7.03 22.51
eighty .03 .03 .13 .13 .forty four .44 two.57 seven.03 22.fifty one
90 .03 .03 .13 .13 .forty four .forty four two.fifty seven 7.03 22.fifty one
a hundred .03 .03 .thirteen .13 .44 .forty four 2.57 seven.03 22.51

 

Item Amount of phase GB042 GB060 GB060A GB90 GB090A GB115 GB142 GB180 GB220
Backlash(arcmin) High Precision P0 one       ≤1 ≤1 ≤1 ≤1 ≤1 ≤1
two           ≤3 ≤3 ≤3 ≤3
Precision P1 one ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3
2 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5
Standard P2 1 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5
two ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7
Torsional Rigidity(N.M/arcmin) one 3 seven seven fourteen 14 25 50 one hundred forty five 225
two three 7 7 fourteen 14 twenty five fifty a hundred forty five 225
Noise(dB) one,2 ≤56 ≤58 ≤58 ≤60 ≤60 ≤63 ≤65 ≤67 ≤70
Rated input speed(rpm) one,2 5000 5000 5000 4000 4000 4000 3000 3000 2000
Max input speed(rpm) 1,two ten thousand ten thousand 10000 8000 8000 8000 6000 6000 4000

 Noise examination standard:Distance 1m,no load.Measured with an input speed 3000rpm 

 

US $50
/ Piece
|
1 Piece

(Min. Order)

###

Application: Machinery, Agricultural Machinery
Function: Distribution Power, Change Drive Torque, Change Drive Direction, Speed Reduction
Layout: Cycloidal
Hardness: Hardened Tooth Surface
Installation: Vertical Type
Step: Double-Step

###

Samples:
US$ 50/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

GB 090 010 P2
Reducer Series Code External Diameter Reduction Ratio Reducer Backlash
GB:High Precision Square Flange Output

GBR:High Precision Right Angle Square Flange Output

GE:High Precision Round Flange Output

GER:High Precision Right Round Flange Output

050:ø50mm
070:ø70mm
090:ø90mm
120:ø120mm
155:ø155mm
205:ø205mm
235:ø235mm
042:42x42mm
060:60x60mm
090:90x90mm
115:115x115mm
142:142x142mm
180:180x180mm
220:220x220mm
010 means 1:10 P0:High Precision Backlash

P1:Precision Backlash

P2:Standard Backlash

###

Item Number of stage Reduction Ratio GB042 GB060 GB060A GB090 GB090A GB115 GB142 GB180 GB220
Rotary Inertia 1 3 0.03 0.16   0.61   3.25 9.21 28.98 69.61
4 0.03 0.14   0.48   2.74 7.54 23.67 54.37
5 0.03 0.13   0.47   2.71 7.42 23.29 53.27
6 0.03 0.13   0.45   2.65 7.25 22.75 51.72
7 0.03 0.13   0.45   2.62 7.14 22.48 50.97
8 0.03 0.13   0.44   2.58 7.07 22.59 50.84
9 0.03 0.13   0.44   2.57 7.04 22.53 50.63
10 0.03 0.13   0.44   2.57 7.03 22.51 50.56
2 15 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
20 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
25 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
30 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
35 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
40 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
45 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
50 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
60 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
70 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
80 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
90 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
100 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51

###

Item Number of stage GB042 GB060 GB060A GB90 GB090A GB115 GB142 GB180 GB220
Backlash(arcmin) High Precision P0 1       ≤1 ≤1 ≤1 ≤1 ≤1 ≤1
2           ≤3 ≤3 ≤3 ≤3
Precision P1 1 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3
2 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5
Standard P2 1 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5
2 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7
Torsional Rigidity(N.M/arcmin) 1 3 7 7 14 14 25 50 145 225
2 3 7 7 14 14 25 50 145 225
Noise(dB) 1,2 ≤56 ≤58 ≤58 ≤60 ≤60 ≤63 ≤65 ≤67 ≤70
Rated input speed(rpm) 1,2 5000 5000 5000 4000 4000 4000 3000 3000 2000
Max input speed(rpm) 1,2 10000 10000 10000 8000 8000 8000 6000 6000 4000
US $50
/ Piece
|
1 Piece

(Min. Order)

###

Application: Machinery, Agricultural Machinery
Function: Distribution Power, Change Drive Torque, Change Drive Direction, Speed Reduction
Layout: Cycloidal
Hardness: Hardened Tooth Surface
Installation: Vertical Type
Step: Double-Step

###

Samples:
US$ 50/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

GB 090 010 P2
Reducer Series Code External Diameter Reduction Ratio Reducer Backlash
GB:High Precision Square Flange Output

GBR:High Precision Right Angle Square Flange Output

GE:High Precision Round Flange Output

GER:High Precision Right Round Flange Output

050:ø50mm
070:ø70mm
090:ø90mm
120:ø120mm
155:ø155mm
205:ø205mm
235:ø235mm
042:42x42mm
060:60x60mm
090:90x90mm
115:115x115mm
142:142x142mm
180:180x180mm
220:220x220mm
010 means 1:10 P0:High Precision Backlash

P1:Precision Backlash

P2:Standard Backlash

###

Item Number of stage Reduction Ratio GB042 GB060 GB060A GB090 GB090A GB115 GB142 GB180 GB220
Rotary Inertia 1 3 0.03 0.16   0.61   3.25 9.21 28.98 69.61
4 0.03 0.14   0.48   2.74 7.54 23.67 54.37
5 0.03 0.13   0.47   2.71 7.42 23.29 53.27
6 0.03 0.13   0.45   2.65 7.25 22.75 51.72
7 0.03 0.13   0.45   2.62 7.14 22.48 50.97
8 0.03 0.13   0.44   2.58 7.07 22.59 50.84
9 0.03 0.13   0.44   2.57 7.04 22.53 50.63
10 0.03 0.13   0.44   2.57 7.03 22.51 50.56
2 15 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
20 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
25 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
30 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
35 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
40 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
45 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
50 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
60 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
70 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
80 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
90 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
100 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51

###

Item Number of stage GB042 GB060 GB060A GB90 GB090A GB115 GB142 GB180 GB220
Backlash(arcmin) High Precision P0 1       ≤1 ≤1 ≤1 ≤1 ≤1 ≤1
2           ≤3 ≤3 ≤3 ≤3
Precision P1 1 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3
2 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5
Standard P2 1 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5
2 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7
Torsional Rigidity(N.M/arcmin) 1 3 7 7 14 14 25 50 145 225
2 3 7 7 14 14 25 50 145 225
Noise(dB) 1,2 ≤56 ≤58 ≤58 ≤60 ≤60 ≤63 ≤65 ≤67 ≤70
Rated input speed(rpm) 1,2 5000 5000 5000 4000 4000 4000 3000 3000 2000
Max input speed(rpm) 1,2 10000 10000 10000 8000 8000 8000 6000 6000 4000

How to Calculate Transmission Ratio for a Cycloidal Gearbox

Using a cycloidal gearbox can be very useful in a wide variety of situations. However, it’s important to understand how to use it properly before implementing it. This article discusses the benefits of using a cycloidal gearbox, how to calculate the transmission ratio, and how to determine the effects of dynamic and inertial forces on the gearbox.helical gearbox

Dynamic and inertial effects

Various studies have been done to study the dynamic and inertial effects of cycloidal gearboxes. These studies have been performed using numerical, analytical and experimental methods. Depending on the nature of the load and its distribution along the gear, a variety of models have been developed. These models use finite element method to determine accurate contact stresses. Some of these models have been developed to address the nonlinear elasticity of contacts.
Inertial imbalance in a cycloidal gearbox causes vibration and can affect the efficiency of the device. This can increase mechanical losses and increase wear and tear. The efficiency of the device also depends on the torque applied to the cycloidal disk. The effectiveness of the device increases as the load increases. Similarly, the nonlinear contact dynamics are also associated with an increase in efficiency.
A new model of a cycloidal reducer has been developed to predict the effects of several operational conditions. The model is based on rigid body dynamics and uses a non-linear stiffness coefficient. The model has been validated through numerical and analytical methods. The model offers drastic reduction in computational costs. The model allows for a quick analysis of several operational conditions.
The main contribution of the paper is the investigation of the load distribution on the cycloidal disc. The study of this aspect is important because it allows for an analysis of the rotating parts and stresses. It also provides an indication of which gear profiles are best suited for optimizing torque transmission. The study has been conducted with a variety of cycloidal gearboxes and is useful in determining the performance of different types of cycloidal gearboxes.
To study the load distribution on the cycloidal disc, the authors investigated the relationship between contact force, cycloidal gearboxes and different gear profiles. They found that the non-linear contact dynamics have a large impact on the efficiency of a cycloidal gearbox. The cycloidal gearbox is an ideal solution for applications that involve highly dynamic servos. It can also be used in machine tool applications and food processing industries.
The study found that there are three common design principles of cycloidal reducers. These are the contact force distribution, the speed reduction and the trochoidal profile of the cycloidal disc. The trochoidal profile has to be defined carefully to ensure correct mating of the rotating parts. The trochoidal profile provides an indication of which gear profiles are best for optimizing torque transmission. The contact force distribution can be improved by refining the mesh along the disc’s width.
As the input speed increases, the efficiency of the reducer increases. This is because contact forces are constantly changing in magnitude and orientation. A cycloidal reducer with a one tooth difference can reduce input speed by up to 87:1 in a single stage. It also has the ability to handle high-cycle moves without backlash.helical gearbox

Transmission ratio calculation

Getting the correct transmission ratio calculation for a cycloidal gearbox requires a good understanding of what a gearbox is, as well as the product that it is being used for. The correct ratio is calculated by dividing the output speed of the output gear by the input speed of the input gear. This is usually accomplished by using a stopwatch. In some cases, a catalog or product specification may be required. The correct ratio is determined by a combination of factors, such as the amount of torque applied to the mechanism, as well as the size of the gears involved.
A cycloidal gear is a type of gear tooth profile that can be represented using a spline. It is also possible to model a gear with a cycloidal profile by using a spline to connect points against the beginning of a coordinate system. This is important in the design and functionality of a gear.
There are many different gears used in machines and devices. These include the herringbone gear, the helical gear and the spiral bevel gear. The best transmission ratios are typically obtained with a cycloidal gearbox. In addition to ensuring the accuracy of positioning, a cycloidal gearbox provides excellent backlash. Cycloid gears have a high degree of mechanical efficiency, low friction, and minimal moment of inertia.
A cycloidal gearbox is often referred to as a planetary gearbox, though it is technically a single-stage gearbox. In addition to having a ring gear, the gearbox has an eccentric bearing that drives the cycloidal disc in an eccentric rotation. This makes the cycloidal gearbox a good choice for high gear ratios in compact designs.
The cycloid disc is the key element of a cycloidal gearbox. The cycloid disc has n=9 lobes, and each lobe of the disc moves by a lobe for every revolution of the drive shaft. The cycloid disc is then geared to a stationary ring gear. The cycloidal disc’s lobes act like teeth on the stationary ring gear.
There are many different gears that are classified by the profile of the gear teeth. The most common gears are the involute and helical gears. Most motion control gears include spur designs. However, there are many other types of gears that are used in various applications. The cycloidal gear is one of the more complicated gears to design. The cycloid disc’s outline can be represented using markers or smooth lines, though a scatter chart will also do.
The cycloid disc’s lobes rotate on a reference pitch circle of pins. These pins rotate 40 deg during the eccentric rotation of the drive shaft. The pins rotate around the disc to achieve a steady rotation of the output shaft.
The cycloid disc’s other obvious, and possibly more important, feature is the’magic’ number of pins. This is the number of pins that protrude through the face of the disc. The disc has holes that are larger than the pins. This allows the pins to protrude through the disc and attach to the output shaft.helical gearbox

Application

Whether you’re building a robot drive or you’re simply looking for a gearbox to reduce the speed of your vehicle, a cycloidal gearbox is a great way to achieve a high reduction ratio. Cycloidal gearboxes are a low-friction, lightweight design that has an extremely stable transmission. They are suitable for industrial robots and can be used in many applications, including positioning robots.
Cycloidal gearboxes reduce speed by using eccentric motion. The eccentric motion enables the entire internal gear to rotate in wobbly cycloidal motion, which is then translated back into circular rotation. This eliminates the need for stacking gear stages. Cycloidal gearboxes also have less friction, higher strength, and greater durability than conventional gearboxes.
The cycloidal gearbox is also used in a number of applications, including marine propulsion systems, and robot drives. Cycloidal gearboxes reduce vibration by using offset gearing to cancel out vibrations.
Cycloidal gears have lower friction, higher strength, and better torsional stiffness than involute gears. They also have a reduced Hertzian contact stress, making them better than involute gears for use with shock loads. They also have a smaller size and weight than conventional gearboxes, and they have a higher reduction ratio than involute gears.
Cycloidal gears are typically used to reduce the speed of motors, but they also offer a number of other advantages. Cycloidal gearboxes have a smaller footprint than other gearboxes, allowing them to fit into confined spaces. They also have low backlash, allowing for precise movement. Cycloidal gears have a higher efficiency, resulting in lower power requirements and lower wear.
The cycloidal disc is one of the most important components of the gearbox. Cycloidal discs are normally designed with a short cycloid, which minimizes the eccentricity of the disc. They are also designed with a shortened flank, resulting in better strength and less stress concentration. Cycloidal discs are typically geared to a stationary ring gear. The cycloid is designed to roll around the stationary ring pins, which push against the circular holes in the disc. Cycloidal gearboxes typically employ two degrees of shift.
Cycloidal drives are ideal for heavy load applications. They also have high torsional stiffness, which makes them highly resistant to shock loads. Cycloidal drives also offer a high reduction ratio, which can be achieved without the need for a large input shaft. They are also compact and have a high service life.
The output shaft of a cycloidal gearbox always has two degrees of shifting, which ensures that the input and output shafts always rotate at a different speed. The output shaft would be a pin casing around the drive disks, which would also allow for easy maintenance.
Cycloidal gearboxes are also very compact and lightweight, so they are ideal for use in industrial robots. The cycloidal gearbox reducer is the most stable, low-vibration reducer in industrial robots, and it has a wide transmission ratio range.
China China Gpg Gpb Low Backlash High Torque Servo Motor Stepping Motor Gearhead Transmission High Precision Planetary Gearbox     cycloidal drive gear ratioChina China Gpg Gpb Low Backlash High Torque Servo Motor Stepping Motor Gearhead Transmission High Precision Planetary Gearbox     cycloidal drive gear ratio
editor by czh 2023-01-27

China High Torque X/B Series Cycloidal Speed Reducer Transmission Gearbox with high quality

Solution Description

 

Solution Description

Product Functions

– Very Common Modular Developed
– Quality materials makes certain the product trustworthiness
– Large Toughness,Compact Dimension
– Long Service Existence
– Low Sound
– Substantial Performance
– Huge radial loading ability
– Price-successful

Comprehensive Pictures

 

Item Parameters

 

Models

Electricity

Ratio

Max. Torque

Output Shaft Dia.

Input Shaft Dia.

1 Phase

X2(B0/B12)

.37~1.5

nine~87

one hundred fifty

Φ25(Φ30)

Φ15

X3(B1/B15)

.55~2.2

9~87

250

Φ35

Φ18

X4(B2/B18)

.seventy five~4.

9~87

five hundred

Φ45

Φ22

X5(B3/B22)

1.5~7.five

9~87

one,000

Φ55

Φ30

X6(B4/B27)

two.2~eleven

nine~87

two,000

Φ65(Φ70)

Φ35

X7

3.~eleven

nine~87

2,700

Φ80

Φ40

X8(B5/B33)

five.5~18.5

9~87

four,500

Φ90

Φ45

X9(B6/B39)

seven.5~thirty

nine~87

seven,a hundred

Φ100

Φ50

X10(B7/B45)

fifteen~45

9~87

twelve,000

Φ110

Φ55

X11(B8/B55)

eighteen.5~fifty five

nine~87

twenty,000

Φ130

Φ70

Our Advantages

 

Packaging & Shipping and delivery

 

Business Profile

Xihu (West Lake) Dis.ng Transmission Equipment Co., Ltd. situated HangZhou metropolis, ZHangZhoug, as 1 skilled
maker and exporter of cycloidal pin wheel reducer,worm reducer, equipment reducer, gearbox ,
AC motor and relative spare parts, owns abundant encounter in this line for several several years.

We are 1 immediate factory, with innovative manufacturing equipment, the powerful growth staff and
producing capacity to supply top quality products for clients.

Our goods extensively served to a variety of industries of Metallurgy, Substances, textile,drugs,wood
and many others. Major markets: China, Africa,Australia,Vietnam, Turkey,Japan, Korea, Philippines…

Welcome to question us any inquiries, excellent provide often for you for long phrase organization.

FAQ

Q: Are you investing business or maker?
A: We are manufacturing unit.
 

Q: How long is your delivery time?
A: Generally it is 5-10 days if the goods are in stock. or it is 15-20 times if the goods are not in inventory.
 

Q: Can we get 1 laptop of each and every product for high quality tests?
A: Sure, we are happy to take trial get for high quality tests.

Q:How to choose a gearbox which fulfills your prerequisite?
A:You can refer to our catalogue to choose the gearbox or we can support to choose when you offer
the technological information of necessary output torque, output speed and motor parameter and so on.

Q: What information shall we give prior to inserting a purchase order?
A:a) Sort of the gearbox, ratio, enter and output kind, enter flange, mounting situation, and motor informationetc.
b) Housing shade.
c) Acquire amount.
d) Other specific specifications.

US $50-1,600
/ Unit
|
1 Unit

(Min. Order)

###

Application: Motor, Machinery, Marine, Agricultural Machinery
Function: Change Drive Direction, Speed Changing, Speed Reduction
Layout: Cycloidal
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Step: Four-Step

###

Samples:
US$ 200/Piece
1 Piece(Min.Order)

|
Request Sample

###

Models
Power
Ratio
Max. Torque
Output Shaft Dia.
Input Shaft Dia.
1 Stage
X2(B0/B12)
0.37~1.5
9~87
150
Φ25(Φ30)
Φ15
X3(B1/B15)
0.55~2.2
9~87
250
Φ35
Φ18
X4(B2/B18)
0.75~4.0
9~87
500
Φ45
Φ22
X5(B3/B22)
1.5~7.5
9~87
1,000
Φ55
Φ30
X6(B4/B27)
2.2~11
9~87
2,000
Φ65(Φ70)
Φ35
X7
3.0~11
9~87
2,700
Φ80
Φ40
X8(B5/B33)
5.5~18.5
9~87
4,500
Φ90
Φ45
X9(B6/B39)
7.5~30
9~87
7,100
Φ100
Φ50
X10(B7/B45)
15~45
9~87
12,000
Φ110
Φ55
X11(B8/B55)
18.5~55
9~87
20,000
Φ130
Φ70
US $50-1,600
/ Unit
|
1 Unit

(Min. Order)

###

Application: Motor, Machinery, Marine, Agricultural Machinery
Function: Change Drive Direction, Speed Changing, Speed Reduction
Layout: Cycloidal
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Step: Four-Step

###

Samples:
US$ 200/Piece
1 Piece(Min.Order)

|
Request Sample

###

Models
Power
Ratio
Max. Torque
Output Shaft Dia.
Input Shaft Dia.
1 Stage
X2(B0/B12)
0.37~1.5
9~87
150
Φ25(Φ30)
Φ15
X3(B1/B15)
0.55~2.2
9~87
250
Φ35
Φ18
X4(B2/B18)
0.75~4.0
9~87
500
Φ45
Φ22
X5(B3/B22)
1.5~7.5
9~87
1,000
Φ55
Φ30
X6(B4/B27)
2.2~11
9~87
2,000
Φ65(Φ70)
Φ35
X7
3.0~11
9~87
2,700
Φ80
Φ40
X8(B5/B33)
5.5~18.5
9~87
4,500
Φ90
Φ45
X9(B6/B39)
7.5~30
9~87
7,100
Φ100
Φ50
X10(B7/B45)
15~45
9~87
12,000
Φ110
Φ55
X11(B8/B55)
18.5~55
9~87
20,000
Φ130
Φ70

Developing a Mathematical Model of a Cyclone Gearbox

Compared to planetary gearboxes, cycloidal gearboxes are often seen as the ideal choice for a wide range of applications. They feature compact designs that are often low friction and high reduction ratios.helical gearbox

Low friction

Developing a mathematical model of a cycloidal gearbox was a challenge. The model was able to show the effects of a variety of geometric parameters on contact stresses. It was able to model stiction in all quadrants. It was able to show a clear correlation between the results from simulation and real-world measurements.
The model is based on a new approach that enables modeling stiction in all quadrants of a gearbox. It is also able to display non-zero current at standstill. Combined with a good simulation algorithm, the model can be used to improve the dynamic behaviour of a controlled system.
A cycloidal gearbox is a compact actuator used for industrial automation. This type of gearbox provides high gear ratios, low wear, and good torsional stiffness. In addition, it has good shock load capacity.
The model is based on cycloidal discs that engage with pins on a stationary ring gear. The resulting friction function occurs when the rotor begins to rotate. It also occurs when the rotor reverses its rotation. The model has two curves, one for motor and one for generator mode.
The trochoidal profile on the cycloidal disc’s periphery is required for proper mating of the rotating parts. In addition, the profile should be defined accurately. This will allow an even distribution of contact forces.
The model was used to compare the relative performance of a cycloidal gearbox with that of an involute gearbox. This comparison indicates that the cycloidal gearbox can withstand more load than an involute gearbox. It is also able to last longer. It is also able to produce high gear ratios in a small space.
The model used is able to capture the exact geometry of the parts. It can also allow a better analysis of stresses.

Compact

Unlike helical gearing, compact cycloidal gearboxes can provide higher reduction ratios. They are more compact and less weighty. In addition, they provide better positioning accuracy.
Cycloid drives provide high torque and load capacity. They are also very efficient and robust. They are ideal for applications with heavy loads or shock loads. They also feature low backlash and high torsional stiffness. Cycloid gearboxes are available in a variety of designs.
Cycloid discs are mounted on an eccentric input shaft, which drives them around a stationary ring gear. The ring gear consists of many pins, and the cycloidal disc moves one lobe for every rotation of the input shaft. The output shaft contains roller pins, which rotate around holes in the cycloidal disc.
Cycloid drives are ideally suited to heavy loads and shock loads. They have high torsional stiffness and high reduction ratios, making them very efficient. Cycloid gearboxes have low backlash and high torque and are very compact.
Cycloid gearboxes are used for a wide variety of applications, including marine propulsion systems, CNC machining centers, medical technology, and manipulation robots. They are especially useful in applications with critical positioning accuracy, such as surgical positioning systems. Cycloid gearboxes feature extremely low hysteresis loss and low backlash over extended periods of use.
Cycloid discs are usually designed with a reduced cycloid diameter to minimize unbalance forces at high speeds. Cycloid drives also feature minimal backlash, a high reduction ratio, and excellent positioning accuracy. Cycloid gearboxes also have a long service life, compared to other gear drives. Cycloid drives are highly robust, and offer higher reduction ratios than helical gear drives.
Cycloid gearboxes have a low cost and are easy to print. CZPT gearboxes are available in a wide range of sizes and can produce high torque on the output axis.helical gearbox

High reduction ratio

Among the types of gearboxes available, a high reduction ratio cycloidal gearbox is a popular choice in the automation field. This gearbox is used in applications requiring precise output and high efficiency.
Cycloid gears can provide high torque and transmit it well. They have low friction and a small backlash. They are widely used in robotic joints. However, they require special tools to manufacture. Some have even been 3D printed.
A cycloidal gearbox is typically a three-stage structure that includes an input hub, an output hub, and two cycloidal gears that rotate around each other. The input hub mounts movable pins and rollers, while the output hub mounts a stationary ring gear.
The input shaft is driven by an eccentric bearing. The disc is then pushed against the ring gear, which causes it to rotate around the bearing. As the disc rotates, the pins on the ring gear drive the pins on the output shaft.
The input shaft rotates a maximum of nine revolutions, while the output shaft rotates three revolutions. This means that the input shaft has to rotate over eleven million times before the output shaft is able to rotate. The output shaft also rotates in the opposite direction of the input shaft.
In a two-stage differential cycloidal speed reducer, the input shaft uses a crank shaft design. The crank shaft connects the first and second cycloidal gears and actuates them simultaneously.
The first stage is a cycloidal disc, which is a gear tooth profile. It has n=7 lobes on its circumference. Each lobe moves around a reference pitch circle of pins. The disc then advances in 360deg steps.
The second stage is a cycloidal disc, also known as a “grinder gear”. The teeth on the outer gear are fewer than the teeth on the inner gear. This allows the gear to be geardown based on the number of teeth.

Kinematics

Various scholars have studied the kinematics of cycloidal gearbox. They have developed various approaches to modify the tooth profile of cycloidal gears. Some of these approaches involve changing the shape of the cycloidal disc, and changing the grinding wheel center position.
This paper describes a new approach to cycloid gear profile modification. It is based on a mathematical model and incorporates several important parameters such as pressure angle, backlash, and root clearance. The study offers a new way for modification design of cycloid gears in precision reducers for robots.
The pressure angle of a tooth profile is an intersegment angle between the normal direction and the velocity direction at a meshing point. The pressure angle distribution is important for determining force transmission performance of gear teeth in meshing. The distribution trend can be obtained by calculating the equation (5).
The mathematical model for modification of the tooth profile can be obtained by establishing the relationship between the pressure angle distribution and the modification function. The dependent variable is the modification DL and the independent variable is the pressure angle a.
The position of the reference point A is a major consideration in the modification design. It ensures the force transmission performance of the meshing segment is optimal. It is determined by the smallest profile pressure angle. The position is also dependent on the type of gear that is being modified. It is also influenced by the tooth backlash.
The mathematical model governing the pressure angle distribution is developed with DL=f(a). It is a piecewise function that determines the pressure angle distribution of a tooth profile. It can also be expressed as DL=ph.
The pressure angle of a tooth is also an angle between the common normal direction at the meshing point and the rotation velocity direction of the cycloid gear.helical gearbox

Planetary gearboxes vs cycloidal gearboxes

Generally, there are two types of gearboxes that are used for motion control applications: cycloidal gearbox and planetary gearbox. Cycloid gearboxes are used for high-frequency motions, while planetary gearboxes are suitable for low-speed applications. Both are highly accurate and precise gearboxes that are capable of handling heavy loads at high cycle rates. But they have different advantages and disadvantages. So, engineers need to determine which type of gearbox is best suited for their application.
Cycloid gearboxes are commonly used in industrial automation. They provide excellent performance with ratios as low as 10:1. They offer a more compact design, higher torque density and greater overload protection. They also require less space and are less expensive than planetary gearboxes.
On the other hand, planetary gearboxes are lightweight and offer a higher torque density. They are also capable of handling higher ratios. They have a longer life span and are more precise and durable. They can be found in a variety of styles, including square-framed, round-framed and double-frame designs. They offer a wide range of torque and speed capabilities and are used for numerous applications.
Cycloid gearboxes can be manufactured with different types of cycloidal cams, including single or compound cycloidal cams. Cycloid cams are cylindrical elements that have cam followers that rotate in an eccentric fashion. The cam followers act like teeth on the internal gear. Cycloid cams are a simple concept, but they have numerous advantages. They have a low backlash over extended periods of time, allowing for more accurate positioning. They also have internal compressive stresses and an overlap factor between the rolling elements.
Planetary gearboxes are characterized by three basic force-transmitting elements: ring gear, sun gear, and planet gear. They are generally two-stage gearboxes. The sun gear is attached to the input shaft, which in turn is attached to the servomotor. The ring gear turns the sun gear and the planet gear turns the output shaft.
China High Torque X/B Series Cycloidal Speed Reducer Transmission Gearbox     with high quality China High Torque X/B Series Cycloidal Speed Reducer Transmission Gearbox     with high quality
editor by czh 2023-01-21

China High Torque Solid Shaft Output Bwd Xwd Series Planetary Cycloidal Gearbox for Concrete Mixer cycloidal drive gearbox

Merchandise Description

XWD2/ XWD3/XWD4/XWD5/XWD6/XWD7 /XWD8 gearbox with ac motor 

Cycloidal reducer adopts meshing cycloid pin gear, planetary transmission principle, so generally also referred to as planetary cycloid reducer.  Planetary cycloidal reducer can be widely employed in petroleum, environmental safety, chemical, cement, transportation, textile, pharmaceutical, food, printing, lifting, mining, metallurgy, development, electricity generation and other industries.
      As a travel or reduction gear,  the equipment is divided into horizontal, vertical, biaxial and straight league assembly way,and so on.  Its distinctive stable composition can exchange common cylindrical gear reducer and worm gear reducer in many cases. Consequently, planetary cycloid gear reducer is commonly utilised in different industries and fields, and is usually welcomed by the vast majority of users.

XWD/BWY cycloid  reducer motor details:

B series:

BW basedoard horizontal set up double axes type 

BL flange vertical put in double axes variety

BWY  basedoard horizontal installed motor direct-link kind

BLY   flange vertical mounted motor immediate-relationship variety

X sequence:

XW basedoard horizontal installed double axes kind

XL flange vertical put in double axes type

XWD basedoard horizontal mounted motor immediate-link sort

XLD flange vertical mounted motor immediate-connection type

 

 

FAQ
1, Q:what’s your MOQ for ac gearbox motor  ?
A: 1pc is alright for each and every type electrical equipment box  motor 

2, Q: What about your guarantee for your induction speed reducer motor ?
A: 1 calendar year ,but apart from man-made ruined

three, Q: which payment way you can acknowledge ?
A: TT, western union .

4, Q: how about your payment way ?
A: a hundred%payment in superior less $5000 ,thirty% payment in innovative payment , 70% payment prior to sending over $5000.

five, Q: how about your packing of velocity reduction motor  ?
A: plywood situation ,if dimensions is little  ,we will pack with pallet for much less 1 container 

six, Q: What information must be given, if I get electric helical geared motor  from you ?
A: rated power,  ratio or output velocity,kind ,voltage , mounting way , quantity , if far more is better , 
 

US $30-200
/ Piece
|
5 Pieces

(Min. Order)

###

Application: Motor, Machinery, Agricultural Machinery
Function: Speed Changing, Speed Reduction
Layout: Cycloidal
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Step: Single-Step

###

Customization:
US $30-200
/ Piece
|
5 Pieces

(Min. Order)

###

Application: Motor, Machinery, Agricultural Machinery
Function: Speed Changing, Speed Reduction
Layout: Cycloidal
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Step: Single-Step

###

Customization:

A Mathematical Model of a Cycloid Gearbox

Having a gearbox with a cycloidal rotor is an ideal design for a car or any other vehicle, as the cycloidal design can reduce the amplitude of vibration, which is a key component in car performance. Using a cycloidal gearbox is also a great way to reduce the amount of friction between the gears in the gearbox, which can help to reduce noise and wear and tear. A cycloidal gearbox is also a very efficient design for a vehicle that needs to perform under high loads, as the gearbox can be very robust against shock loads.helical gearbox

Basic design principles

cycloidal gearboxes are used for precision gearing applications. Cycloidal drives are compact and robust and offer lower backlash, torsional stiffness and a longer service life. They are also suitable for applications involving heavy loads.
Cycloidal drives are compact in size and provide very high reduction ratios. They are also very robust and can handle shock loads. Cycloidal drives are ideally suited to a wide range of drive technologies. Cycloidal gears have excellent torsional stiffness and can provide a transmission ratio of 300:1. They can also be used in applications where stacking multiple gear stages is not desired.
In order to achieve a high reduction ratio, cycloidal gears must be manufactured extremely accurately. Cycloidal gears have a curved tooth profile that removes shear forces at any point of contact. This provides a positive fit for the gear disc. This profile can be provided on a separate outer bushing or as an internal gear profile insert.
Cycloidal drives are used in marine propulsion systems, where the load plate rotates around the X and Y axis. The plate is anchored by a threaded screw hole arranged 15mm away from the center.
A secondary carrier body is used in a cycloidal gearbox to support the load plate. The secondary carrier body is composed of a mounting carrier body and a secondary carrier disc.

Low friction

Several studies have been conducted to understand the static problems of gears. In this paper, we discuss a mathematical model of a low friction cycloidal gearbox. This model is designed to calculate various parameters that affect the performance of the gearbox during production.
The model is based on a new approach that includes the stiction effect and the nonlinear friction characteristic. These parameters are not covered by the conventional rule of thumb.
The stiction effect is present when the speed direction is changed. During this time, the input torque is required to prevail over the stiction effect to generate movement. The model also enables us to calculate the magnitude of the stiction effect and its breakaway speed.
The most important thing is that the model can be used to improve the dynamic behavior of a controlled system. In this regard, the model has a high degree of accuracy. The model is tested in several quadrants of the gearbox to find the optimum stiction breakaway speed. The simulation results of the model show that this model is effective in predicting the efficiency of a low friction cycloidal gearbox.
In addition to the stiction model, we also studied the efficiency of a low friction cycloidal reducer. The reduction ratio of this gearbox was estimated from the formula. It is found that the ratio approaches negative infinity when the motor torque is close to zero Nm.

Compact

Unlike standard planetary gears, cycloidal gearboxes are compact, low friction and feature virtually zero backlash. They also offer high reduction ratios, high load capacity and high efficiency. These features make them a viable option for a variety of applications.
Cycloid disks are driven by an eccentric input shaft. They are then driven by a stationary ring gear. The ring gear rotates the cycloidal disk at a higher rate. The input shaft rotates nine times to complete a full rotation. The ring gear is designed to correct the dynamic imbalance.
CZPT cycloidal gearheads are designed for precision and stable operation. These reducers are robust and can handle large translocations. They also offer high overload protection. They are suitable for shock wave therapy. CZPT gearheads are also well suited for applications with critical positioning accuracy. They also require low assembly and design costs. They are designed for long service life and low hysteresis loss.
CZPT cycloidal reducers are used in a variety of industrial applications, including CNC machining centers, robot positioners and manipulators. They offer a unique design that can handle high forces on the output axis, and are especially suitable for large translocations. These gearheads are highly efficient, reducing costs, and are available in a variety of sizes. They are ideal for applications that require millimetre accuracy.

High reduction ratios

Compared to other gearboxes, cycloidal gearboxes offer high reduction ratios and small backlash. They are also less expensive. Cycloid gearboxes can be used in a variety of industries. They are suitable for robotic applications. They also have high efficiency and load capacity.
A cycloidal gearbox works by rotating a cycloidal disc. This disc contains holes that are bigger than the pins on the output shaft. When the disc is rotated, the output pins move in the holes to generate a steady output shaft rotation. This type of gearbox does not require stacking stages.
Cycloid gearboxes are usually shorter than planetary gearboxes. Moreover, they are more robust and can transmit higher torques.
Cycloid gearboxes have an eccentric cam that drives the cycloidal disc. The cycloidal disc advances in 360deg/pivot/roller steps. It also rotates in an eccentric pattern. It meshes with the ring-gear housing. It also engages the internal teeth of the ring-gear housing.
The number of lobes on the cycloidal disc is not sufficient to generate a good transmission ratio. In fact, the number of lobes must be less than the number of pins surrounding the cycloidal disc.
The cycloidal disc is rotated by an eccentric cam that extends from the base shaft. The cam also spins inside the cycloidal disc. The eccentric motion of the cam helps the cycloidal disc rotate around the pins of the ring-gear housing.helical gearbox

Reducing amplitude of the vibration

Various approaches to reducing amplitude of the vibration in a cycloidal gearbox have been studied. These approaches are based on the kinematic analysis of gearbox.
A cycloidal gearbox is a gearbox that consists of bearings, gears, and an eccentric bearing that drives a cycloidal disc. This gearbox has a high reduction ratio, which is achieved by a series of output shaft pins that drive the output shaft as the disc rotates.
The test bench used in the studies has four sensors. Each sensor acquires signals with different signal processing techniques. In addition, there is a tachometer that acquires variations in rotational velocity at the input side.
The kinematic study of the robotic gearbox was performed to understand the frequency of vibrations and to determine whether the gearbox is faulty. It was found that the gearbox is in healthy operation when the amplitude of the x and y is low. However, when the amplitude is high, it is indicative of a malfunctioning element.
The frequency analysis of vibration signals is performed for both cyclostationary and noncyclostationary conditions. The frequencies that are selected are those that appear in both types of conditions.

Robust against shock loads

Compared to traditional gearboxes, cycloidal gearboxes have significant benefits when it comes to shock loads. These include high shock-load capacity, high efficiency, reduced cost, lower weight, lower friction, and better positioning accuracy.
Cycloid gears can be used to replace traditional planetary gears in applications where inertia is important, such as the transportation of heavy loads. They have a lighter design and can be manufactured to a more compact size, which helps reduce cost and installation expense. Cycloid gears are also able to provide transmission ratios of up to 300:1 in a small package.
Cycloid gears are also suitable for applications where a long service life is essential. Their radial clamping ring reduces inertia by up to 39%. Cycloid gears have a torsional stiffness that is five times higher than that of conventional planetary gears.
Cycloid gearboxes can provide significant improvements in concrete mixers. They are a highly efficient design, which allows for important innovations. They are also ideal for servo applications, machine tools, and medical technology. They feature user-friendly screw connections, effective corrosion protection, and effective handling.
Cycloid gears are especially useful for applications with critical positioning accuracy. For example, in the control of large parabolic antennas, high shock load capacity is required to maintain accuracy. Cycloid gears can withstand shock loads up to 500% of their rated torque.helical gearbox

Inertial effects

Various studies have been conducted to investigate the static problems of gears. However, there is still a need for a proper model to investigate the dynamic behaviour of a controlled system. For this, a mathematical model of a cycloidal gearbox has been developed. The presented model is a simple model that can be used as the basis for a more complex mechanical model.
The mathematical model is based on the cycloidal gearbox’s mechanical construction and has a nonlinear friction characteristic. The model is able to reproduce the current peaks and breaks at standstill. It also considers the stiction effect. However, it does not cover backlash or torsional stiffness.
This model is used to calculate the torque generating current and the inertia of the motor. These values are then compared with the real system measurement. The results show that the simulation results are very close to the real system measurement.
Several parameters are considered in the model to improve its dynamic behaviour. These parameters are calculated from the harmonic drive system analysis. These are torque-generating current, inertia, and the contact forces of the rotating parts.
The model has a high level of accuracy and can be used for motor control. It is also able to reproduce the dynamic behaviour of a controlled system.
China High Torque Solid Shaft Output Bwd Xwd Series Planetary Cycloidal Gearbox for Concrete Mixer     cycloidal drive gearboxChina High Torque Solid Shaft Output Bwd Xwd Series Planetary Cycloidal Gearbox for Concrete Mixer     cycloidal drive gearbox
editor by czh 2023-01-18

Customized made in China – replacement parts – in Seregno Italy High Torque Planetary Gearbox Application for Drilling Machine with ce certificate top quality low price

Customized  made in China - replacement parts -  in Seregno Italy  High Torque Planetary Gearbox Application for Drilling Machine with ce certificate top quality low price

Customized  made in China - replacement parts -  in Seregno Italy  High Torque Planetary Gearbox Application for Drilling Machine with ce certificate top quality low price

We – EPG Team the bigge EPT Chain and agricultural gearbox manufacturing facility in China with 5 distinct branches. For much more particulars: Cell/whatsapp/telegram/Kakao us at: 0086~13083988828 13858117778 0571 88828

Item Description
SGR planetary equipment motor 
Technological knowledge:
1. Ratio range: 8.1-191
two. Input electrical power: .twelve-270 KW
3. Permit torque rang: ≤ 50000 N. M
four. Output pace: .3~205 r/min
five. Composition: Foot-mounted, flange-mounted, shaft-mounted

Input framework motor,IEC flange
Output pace solid shaft, hollow shaft with key,with shrink disk

Attribute:
1. Adopt optimized style, module mixture, proper angle output, area reduction
2. Substantial energy and longevity gears
3. Can be mixed with numerous motors, wider ratio range
4. Huge output torque, efficiently startup, high performance
Generation photographs:

———————————————————————————————————————————————
FAQ:

one.Are you a manufacturing facility or trader ?
We are a skilled manufacturing unit which has twenty many years heritage specialized in equipment transmission .

2.MOQ:
Our MOQ is 1pcs. However there is one dealing with co EPT $150 for the single order which much less than $3000.00

three. Warranty
Our guarantee is 12months

4. Payment expression
a hundred% T/T in advance and LC at sight .

five. Do you acknowledge customization ?
Sure.SGR have robust R&D group, we can give customizable service according to needs.

6. Packing
Generally we use common export plywood case to arrange the shipment .

7. Delivery time
In regular ,time of shipping and delivery is 30days right after receiving the prepayment .

eight. What kinds of certification do you use ?
DNV-ISO9001:2008, SGS,CE and so on, And new products patent.

nine. What varieties of inspection you do just before cargo ?
We do temperature check, sound, and oil leak inspection and commissioning just before cargo.

ten.How do you remedy if the production have issue ?
Largely, we will not need to have consumer deliver the goods back to us. Since the co EPT is extremely high, if there meets a difficulty,we firstly ask for the images for damaged areas. And base on the photographs, we can have a basic idea for the defect purpose. Our guarantee is twelve months, if throughout the assure, we can supply repair .  
 

The use of first equipment manufacturer’s (OEM) component numbers or logos , e.g. CASE® and John Deere® are for reference reasons only and for indicating product use and compatibility. Our organization and the detailed alternative elements contained herein are not sponsored, accepted, or manufactured by the OEM.

Customized  made in China - replacement parts -  in Seregno Italy  High Torque Planetary Gearbox Application for Drilling Machine with ce certificate top quality low price

Customized  made in China - replacement parts -  in Seregno Italy  High Torque Planetary Gearbox Application for Drilling Machine with ce certificate top quality low price

Customized  made in China - replacement parts -  in Seregno Italy  High Torque Planetary Gearbox Application for Drilling Machine with ce certificate top quality low price